• Title/Summary/Keyword: Gap spacing

Search Result 101, Processing Time 0.022 seconds

Noise generated from the inter-coach spacing of a high-speed train (고속열차의 차간 공간에 의해 발생하는 실내소음 특성 분석)

  • Choi, Sung-Hoon;Park, Jun-Hong;Park, Chan-Kyung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.1449-1452
    • /
    • 2006
  • When fluid at high speed flows over an open cavity, large acoustic pressure fields inside the cavity are produced by fluid/structure interactions at the downstream end of the cavity. The inter-coach spacing is one of the most important sources of the aero-acoustic noise of a high-speed train. This noise can usually be heard as low frequency structure-borne noise inside the train. In this study experiments were performed in order to investigate the effects of mud-flap length on the aeroacoustic noise generation inside high-speed trains. Results of the measurement confirmed that the characteristics of the noise generated from the inter-coach spacing are strongly dependent on the size of the gap. Also investigated are the characteristics of the turbulent flow after the inter-coach spacing and consequent generation of the aeroacoustic noise inside the cabin.

  • PDF

Performance Analysis of A Variable-Spacing Cesium Thermionic Energy Converter (열전변환 장치의 특성 분석에 대한 연구)

  • Lee, Deuk-Yong
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.41 no.9
    • /
    • pp.1085-1094
    • /
    • 1992
  • A variable-spacing cesium thermionic energy conversion test station is designed and fabricated for the study of power generation. The diode is in the form of a guard-ringed plane-parallel geometry in which a polycrystalline rhenium emitter of 2 cmS02T area faces a radiation-cooled polycrystalline rhenium collector of 1.9 cmS02T area. The emission of plasma from heated refractory electrode metal is the driving reaction in the direct conversion of heat to electricity by thermionic energy conversion. The plasma is produced from electrons and positive ions formed simultaneously by thermionic emission and surface ionization of cesium atoms incident on the hot emitter from the cesium vapor in the diode. And high plasma density causes plasma multiplication within the gap due to volume ionization that results in high power output. The variation of the saturation current of a Knudsen converter is investigated at an emitter-collector gap of 0.1 mm and an emitter temperatures. A maximum power output of 13.47 watta/cmS02T is observed at a collector temperature of 963 K and a cesium reservoir temperature of 603 K.

A Stop-and-Go Cruise Control Strategy with Guaranteed String Stability (String Stability를 보장하는 정지/서행 순항제어 시스템)

  • 박요한;이경수
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.6
    • /
    • pp.227-233
    • /
    • 2002
  • A vehicle longitudinal control strategy with guaranteed string stability for vehicle stop-and-go(SG) cruise control is presented in this paper. The SG cruise control systems should be designed such that string stability can be guaranteed in addition to that every vehicle in a string of SG cruise control vehicles must track any bounded acceleration and velocity profile of its preceding vehicle with a bounded spacing and velocity error. An optimal vehicle following control law based on the information of the 1311owing distance (clearance) and its velocity relative to the vehicle ahead (relative velocity) has been used and string stability analysis has been done based on the control law and constant time gap spacing policy, A validated multi-vehicle simulation package has been shown that the string stability analysis using the approximate model of the vehicle servo-loop which includes vehicle powertrain and brake control system dynamics is valid in the design of the SG cruise control law with guaranteed string stability.

A Study on the Flow=Induced Vibration of Tube Array in Uniform Crossflow(II) On the Flow-Induced Vibration of Two Interfering Circular Cylinders in Tandem (균일 유동장내 튜브배열의 유동관련 진동에 관한 연구( II ) 직렬로 배열된 두 원주의 유동여기 진동에 관하여)

  • 이기백;김봉환;양장식
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.6
    • /
    • pp.1518-1528
    • /
    • 1993
  • The wake-induced vibration and proximity-induced vibration of two interfering circular cylinders in tandem are investigated experimentally, using an elastically supported cylinder and a fixed cylinder in uniform crossflow. Dynamic responses and flow periodicity in wake are measured to investigate the effect of system parameters on aerodynamic instability. The parameters include the free stream wind velocity and the position of two interfering circular cylinders. The oscillating behavior of the amplitude of the elastically supported cylinder is changed by varying the position, the relative gap spacing between two interfering circular cylinders and the reduced velocities. In small gap spacing between the elastically supported cylinder located to upstream and the circular cylinder fixed to downstream, the fluidelastic instability is founded. The vibration amplitude decreases notably as gap spacing between two interfering circular cylinders becomes large. The dynamic behavior at g/D-4.0 is similar to that of the single circular cylinder.

A Basic Study on a New Type Particulate Emission Control Means of a Power Station Using a Micro-Gap and a Pulse Discharge (Micro-Airgap Discharge Phenomena) (초미소간격(超微小間隔)과 극단(極端)펄스방전(放電)을 이용(利用)한 미연소탄소립자(未燃燒炭素粒子) 소각제거기술(燒却除去技術) 개발기초연구(開發基礎硏究)(I) (초미소간격(超微小間隔)의 방전현상(放電現象)))

  • Moon, Jae-Duk;Shin, Soo-Youn
    • Proceedings of the KIEE Conference
    • /
    • 1993.07b
    • /
    • pp.605-608
    • /
    • 1993
  • Breakdown characteristics of a small rod-to-rod microairgap has been studied for obtain an optimum breakdown voltage and an airgap spacing to be used as an emission control means by the electrical arc-burning unburnt carbon particulates exhausted from a power station burner. It is found that the breakdown voltage at the rod-to-rod airgap spacing in the rang of $1{\sim}100{\mu}m$ decreased with decrease in the rod-to-rod airgap spacing. And there were no minimum breakdown voltage on a $V_b$-Pd characteristics which is known as the minimum voltage in Paschen's law in air atmosphere. Breakdown voltages of the airgap at the constant airgap spacing were $V_{b-dc}>V_{b-ac}>V_{b-pulse}$, and it was lowest for the pulse voltage applied. As a result, it is found that a pulse power was one of effective power compared with dc or ac to be used as such an unburnt carbon particulate emission control means and the airgap spacing became to several tens ${\mu}m$, then the breakdown voltages were down to several handreds voltages.

  • PDF

Evaluation on the buffer temperature by thermal conductivity of gap-filling material in a high-level radioactive waste repository

  • Seok Yoon;Min-Jun Kim ;Seeun Chang ;Gi-Jun Lee
    • Nuclear Engineering and Technology
    • /
    • v.54 no.11
    • /
    • pp.4005-4012
    • /
    • 2022
  • As high-level radioactive waste (HLW) generated from nuclear power plants is harmful to the human body, it must be safely disposed of by an engineered barrier system consisting of disposal canisters and buffer and backfill materials. A gap exists between the canister and buffer material in a HLW repository and between the buffer material and natural rock-this gap may reduce the water-blocking ability and heat transfer efficiency of the engineered barrier materials. Herein, the basic characteristics and thermal properties of granular bentonite, a candidate gap-filling material, were investigated, and their effects on the temperature change of the buffer material were analyzed numerically. Heat transfer by air conduction and convection in the gap were considered simultaneously. Moreover, by applying the Korean reference disposal system, changes in the properties of the buffer material were derived, and the basic design of the engineered barrier system was presented according to the gap filling material (GFM). The findings showed that a GFM with high initial thermal conductivity must be filled in the space between the buffer material and rock. Moreover, the target dry density of the buffer material varied according to the initial wet density, specific gravity, and water content values of the GFM.

Evaluation of Pile Spacing Ratio of Stabilizing Piles for Ground Destruction Reduction at the Time of Soft Ground Excavation (연약지반 굴착시 지반파괴 저감을 위한 억지말뚝의 간격비 평가)

  • Kim, Jae-Hong
    • Journal of the Korean Geotechnical Society
    • /
    • v.32 no.7
    • /
    • pp.47-56
    • /
    • 2016
  • In the case of excavating ground backfilled with soft ground, ground destruction occurs owing to the discharge of groundwater from excavated back ground in spite of earth retaining wall. To minimize this, indoor model test was implemented applying stabilizing pile as a solution for ground destruction. The unreinforced case was compared with the reinforced case and the comparison demonstrated that the ratio of the gap in settlement of the two cases is about three to one, which proves the reinforcement effect (Kim, 2014). This study has carried out the evaluation of appropriate pile spacing ratio, according to the confirmed effect of stabilizing pile. In the evaluation test the case with pile spacing ratio of 0.66 (5 stabilizing piles) was compared with that of 0.76 (3 stabilizing piles), and it has been shown that applying stabilizing pile has effect on ground destruction reduction, but may rather work as load when pile spacing ratio is narrower than a certain interval. So it was found that adjustment for appropriate pile spacing ratio is required at the stage of design. This study has shown that the pile spacing ratio is appropriate at around 0.7~0.8, which reduces ground destruction and does not function as the load of excavated back ground.

Discharge and Ozone Generation Characteristics of a Co-axial Cylinder Type Ozonizer in Accordance with Varying Discharge Gap (방전갭 변화에 따른 동축 원통형 오존발생기의 방전특성과 오존생성특성)

  • 이상근;전병준;박용권;이광식;최상태;송현직
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.15 no.6
    • /
    • pp.103-110
    • /
    • 2001
  • Recently, ozone is utilized in various fields and its needs are expanding. Therefore, so many ozone generation methods have been reported in the last year, its main purpose is to get the high ozone concentration and to improve the ozone yield one of them is a Co-axial cylinder-type ozonizer. In this paper, a new ozonizer, which is using radio-frequency power supply, is fabricated to investigate discharge characteristics and ozone generation characteristics in accordance wish variation of grip spacing of electrodes.

  • PDF

Hydrodynamic forces on blocks and vertical wall on a step bottom

  • Mondal, Ramnarayan;Alam, Md. Mahbub
    • Wind and Structures
    • /
    • v.30 no.5
    • /
    • pp.485-497
    • /
    • 2020
  • A study, using potential water wave theory, is conducted on the oblique water wave motion over two fixed submerged rectangular blocks (breakwaters) placed over a finite step bottom. We have considered infinite and semi-infinite fluid domains. In both domains, the Fourier expansion method is employed to obtain the velocity potentials explicitly in terms of the infinite Fourier series. The unknown coefficients appearing in the velocity potentials are determined by the eigenfunction expansion matching method at the interfaces. The derived velocity potentials are used to compute the hydrodynamic horizontal and vertical forces acting on the submerged blocks for different values of block thickness, gap spacing between the two blocks, and submergence depth of the upper block from the mean free surface. In addition, the wave load on the vertical wall is computed in the case of the semi-infinite fluid domain for different values of blocks width and the incident wave angle. It is observed that the amplitudes of hydrodynamic forces are negligible for larger values of the wavenumber. Furthermore, the upper block experiences a higher hydrodynamic force than the lower block, regardless of the gap spacing, submergence depth, and block thickness.

Influences of Mesh Shapes and Interspacings on Ozone Generation Characteristics (그물방전극 형상과 방전공격이 오존생에 미치는 영향)

  • Park, Seung-Lok;Lee, Jae-Chan;Moon, Jae-Duk;Jung, Sung-Jin
    • Proceedings of the KIEE Conference
    • /
    • 2000.07e
    • /
    • pp.29-32
    • /
    • 2000
  • Ozone has been widely applied to many industrial fields because of its strong oxidation effects. Therefore, the studies have been progressed for the effective and high concentration of one generation. The silent or surface discharge have been mainly used for high concentration ozone generation until now. But these two types of ozone generators have shortcomings to be improved. In this study, the ozone generator which improved the shortcomings of above two type of ozone generators was proposed and manufactured for high concentration ozone generation. And the proposed ozone generator could generate the surface and barrier discharge simultaneously. For this purpose, a mesh type discharge electrodes were proposed and the experiments were fulfilled as a function of the widths and spacings of mesh electrodes and gap spacings between the dielectric barrier and mesh electrode. When the width of mesh electrode[WM] and spacing of mesh electrode[SM] are 0.3[mm] and 0.8[mm] respectively, the maximum ozone concentration of 2.96[vol%] was obtained at 5.6[kV], 830[mA], gap spacing (S)=0.65[mm].

  • PDF