• Title/Summary/Keyword: Gap parameter

Search Result 308, Processing Time 0.027 seconds

Counter-Current Gas-Liquid Two-Phase Flow Regimes in Narrow Rectangular Channels (협소 사각 유로에서 대향류 기/액 2상 유동양식)

  • Sohn, B.H.;Kim, B.J.;Jeong, S.
    • Proceedings of the KSME Conference
    • /
    • 2000.11b
    • /
    • pp.136-141
    • /
    • 2000
  • A study of counter-current two-phase flow in narrow rectangular channels has been performed. Two-phase flow regimes were experimentally studied in 760 mm long and 100 mm wide test sections with 2.0 and 3.0mm gaps. The resulting data have been compared to previous transition models. For the transition from bubbly to slug flow the superficial velocity of gas increased as the gap width increased. The comparison of experimental data to the transition model developed by Taitel and Barnea showed relatively good agreement for the bubbly-to-slug transition in the case of 2mm gap width. For the criteria of Mishima and Ishii to be applicable to the slug-to-churn transition the distribution parameter should be well defined for narrow channels. Even though the gap width of narrow channels increased the superficial gas velocity did not change for the transition form chum to annular flow regime. For the chum-to-annular transition the model of Taitel and Barnea showed discrepancies with experimental data, especially in the channel with larger gap.

  • PDF

An Experimental Study on the Two-Phase Flow Pressure Drop Within Horizontal Rectangular Channels with Small Gap Heights (미세 수평 사각유로에서의 2상 유동 압력강하에 관한 실험적 연구)

  • Lee, Han Ju;Lee, Sang Yong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.5
    • /
    • pp.637-645
    • /
    • 1999
  • Horizontal two-phase flow pressure drop within rectangular channels with small gap heights have been examined experimentally. The gap heights range from 0.4mm to 4mm corresponding to aspect ratios(the channel height divided by the width) from 0.02 to 0.2. Water and air were used as the test fluids with the superficial velocity ranges being 0.03-2.39m/s and 0.05-18.7m/s, respectively. The experimental results In rectangular channels were compared with the Lockhart-Martinelli correlation, which are widely used for conventional round tube. The Lockhart-Martinelli correlation turned out to be Inappropriate to represent the present experimental data. In this respect, considering the aspect ratio and gap-height effects, an empirical correlation on two-phase flow pressure drop was proposed. The proposed correlation successfully covers the bubbly, plug, slug and annular flow regimes.

Discussion on the Sealing Gap Behavior of Rocket Motor Connection with the Structural Design Parameters (추진기관 기밀체결부의 형상설계변수에 따른 기밀조립 갭의 영향평가)

  • Kim, Seong-eun;Ro, Young-hee;Hwang, Tae-kyung
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.517-520
    • /
    • 2017
  • In this paper, we represented the structural design parameter effect on the sealing gap behavior of solid rocket motor case and nozzle connection under penetrated pressure through the sealing path between insulation rubber and the ablative FRP bonded on the inside convergent wall of nozzle. It is important to keep the good sealing capacity during all the combustion time of SRM. To achieve the crucial role of sealing system of SRM, designers must consider design factors for stable sealing clearance gap as the nearly unchanged initial design state as possible for sufficient compression rate of O-ring under sealing gap pressure.

  • PDF

A Study on the Band Characteristics of ZnSe Thin Film with Zinc-blende Structure (Zinc Blende 구조를 가지는 ZnSe 결정의 밴드 특성에 관한 연구)

  • Park, Jeong-Min;Kim, Hwan-Dong;Yoon, Do-Young
    • Journal of the Korean Electrochemical Society
    • /
    • v.14 no.3
    • /
    • pp.145-151
    • /
    • 2011
  • ZnSe, as a II-VI compound semiconductor which has a wide band gap in the visible region is applicable to the various fields such as laser diode, display and solar cell. By using the electrochemical deposition method, ZnSe thin film was synthesized on the ITO glass substrate. The synthesis of ZnSe grains and their structure having zinc blende shape were verified through the analysis of XRD and SEM. UV spectrophotometric method determined the band gap as the value of 2.76 eV. Applying the DFT (Density Functional Theory) in the molecular dynamics, the band structure of ZnSe grains was analyzed. For ZnSe grains with zinc blende structure, the band structure and its density of state were simulated using LDA (Local Density Approximation), PBE (Perdew Burke Ernzerhof), and B3LYP (Becke, 3-parameter, Lee-Yang-Parr) functionals. Among the calculations of energy band gap upon each functional, the simulated one of 2.65 eV based on the B3LYP functional was mostly near by the experimental measurement.

The Calculation of the Energy Band Gaps of Zincblende InAs1-X NX on Temperature and Composition (온도 및 조성비 변화에 따른 질화물계 화합물 반도체 InAs1-X NX의 에너지 밴드갭 계산)

  • Chung, Ho-Yong;Kim, Dae-Ik
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.11 no.12
    • /
    • pp.1165-1174
    • /
    • 2016
  • The energy band gaps and the bowing parameters of zincblende InAs1-xN are determined by using an empirical pseudopotential method(EPM) within the improved virtual crystal approximation(VCA), which includes the disorder effect. The direct-band-gap bowing parameter calculated by using the EPM is 4.1eV for InAs1-xNx ($0{\leq}x{\leq}0.05$). The dependences of the band gaps of N-dilute InAs1-xNx on the temperature and composition are calculated by modifying the band anti-crossing(BAC) model. The calculation results are consistent with experimental values, and the coupling parameter CMN of InAs1-xNx is found to be equal to 1.8 by fitting the EPM data.

A Compensation Method of Parameter Variations for the Speed-Sensorless Vector Control System of Induction Motors using Zero Sequence Third Harmonic Voltages (영상분 3고조파 전압을 이용한 속도센서없는 유도전동기 벡터제어 시스템의 파라미터 변동 보상)

  • Choe, Jeong-Su;Kim, Jin-Su;Kim, Yeong-Seok
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.48 no.2
    • /
    • pp.75-82
    • /
    • 1999
  • A compensation method of the motor parameters using zero sequence third harmonic voltage is presented for the speed sensorless vector control of the induction motor considering saturation of the flux. Generally, the air-gap flux of the saturated induction motor contains the space harmonic components rotating with the synchronous frequency of the motor. Because the EMF of the saturated induction motor contains the zero sequence harmonic voltages at the neutral point of the motor, those harmonic voltages can be used as a saturation index. In this work, the rotor flux observer is firstly designed for the speed sensorless vector control of induction motor. And a novel measurement method of the space harmonic voltage and a compensation method of th LPF(Low Pass Filter) are proposed. For compensating the non-linear variations of the magnetizing inductance depending on the saturation level of the motor, the dominant third harmonic voltage of the motor is used as a saturation function of the air-gap flux. And the variation of the stator resistance owing to the motor temperature can also be measured with the phase angle between the impressed voltage vector and the zero sequence voltage. The validity of the proposed parameter compensation scheme in the speed sensorless vector control using rotor flux observer is verified by the result of the simulations and the experiments.

  • PDF

A Microscopic Analysis on the Shapes of Fundamental Diagram Using Time Gap (차간시간(Time Gap) 변수를 이용한 교통기본도(Fundamental Diagram)의 미시적 해석)

  • Kim, Tae-Wan;Kim, Sang-Gu;Kim, Young-Ho;Son, Young-Tae
    • Journal of Korean Society of Transportation
    • /
    • v.22 no.3 s.74
    • /
    • pp.95-105
    • /
    • 2004
  • The fundamental diagram is a important element in a variety of transportation studies. While various shapes of the fundamental diagram have been proposed and numerous debates on the best-fit fundamental diagram have been made, the reason why the fundamental diagram has many different shapes has not been well explained. This study introduces time sap as a key parameter to understand drivers' behavioral differences at different locations and traffic conditions, then relate to the shape of the fundamental diagram. From the freeway event detector data, it is shown that time gap follows a certain probabilistic distribution and its mean value varies along locations. It also turns out that drivers take different time gaps for different travel speeds. Three different types of time gap-speed diagrams are identified and matched to Greenberg, reversed-lambda, and inverted-V types of fundamental diagrams, respectively. This study explains the characteristics of fundamental diagrams using time gap as a microscopic variable and describes drivers' behavioral characteristics according to traffic and geometric conditions.

Mechanism Study of Flowable Oxide Process for Sur-100nm Shallow Trench Isolation

  • Kim, Dae-Kyoung;Jang, Hae-Gyu;Lee, Hun;In, Ki-Chul;Choi, Doo-Hwan;Chae, Hee-Yeop
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.68-68
    • /
    • 2011
  • As feature size is smaller, new technology are needed in semiconductor factory such as gap-fill technology for sub 100nm, development of ALD equipment for Cu barrier/seed, oxide trench etcher technology for 25 nm and beyond, development of high throughput Cu CMP equipment for 30nm and development of poly etcher for 25 nm and so on. We are focus on gap-fill technology for sub-30nm. There are many problems, which are leaning, over-hang, void, micro-pore, delaminate, thickness limitation, squeeze-in, squeeze-out and thinning phenomenon in sub-30 nm gap fill. New gap-fill processes, which are viscous oxide-SOD (spin on dielectric), O3-TEOS, NF3 Based HDP and Flowable oxide have been attempting to overcome these problems. Some groups investigated SOD process. Because gap-fill performance of SOD is best and process parameter is simple. Nevertheless these advantages, SOD processes have some problems. First, material cost is high. Second, density of SOD is too low. Therefore annealing and curing process certainly necessary to get hard density film. On the other hand, film density by Flowable oxide process is higher than film density by SOD process. Therefore, we are focus on Flowable oxide. In this work, dielectric film were deposited by PECVD with TSA(Trisilylamine - N(SiH3)3) and NH3. To get flow-ability, the effect of plasma treatment was investigated as function of O2 plasma power. QMS (quadruple mass spectrometry) and FTIR was used to analysis mechanism. Gap-filling performance and flow ability was confirmed by various patterns.

  • PDF

Analysis for Steel Corrosion-Induced Damage in Cross-Section of Reinforced Concrete (철근부식에 의한 철근 콘크리트 단면의 손상 해석)

  • Jung-Suk Kim;Ki Yong Ann
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.11 no.1
    • /
    • pp.79-88
    • /
    • 2023
  • In this study, a development of the rust formation arising from steel corrosion was modelled to quantify the structural impact in steel reinforced concrete. The interfacial gap, cover depth and diameter of steel rebar were taken for variables in modelling. It was found that the interfacial gap was the most influencing on the structural limit at steel corrosion, followed by steel diameter and cover depth. At 75 mm of cover depth with 20 mm of the steel diameter, the rust amount to reach cracking accounted for 16.95-27.69 ㎛ to 1-10 ㎛ of the interfacial gap. It was found that there was no risk of cracking and structural limit until the rust was formed within the interfacial gap. With a further formation of rust, the concrete section was successively behaved to yielding, cracking and failure. Additionally, the interfacial gap was the most dominant parameter for the rust amount to reach the cracking of concrete at the interfacial zone, whilst the cover depth had a marginal effect on cracking but had a crucial influence on the rust to failure.

Design Circuit Parameter Estimation of Impulse Generator and its application to 10/350${\mu}s$ Lightning Impulse Current Generator (임펄스 발생기의 회로 설계 파라미터 예측계산과 10/350${\mu}s$ 뇌임펄스 전류발생기 적용)

  • Lee, Jae-Bok;Shenderey, S. V.;Chang, Sug-Hun;Myung, Sung-Ho;Cho, Yuen-Gue
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.10
    • /
    • pp.1822-1828
    • /
    • 2008
  • This paper presents design parameter calculation methodology and its realization to construction for the 10/350${\mu}s$ lightning impulse current generator(ICG) modelled as double exponential function waveform with characteristic parameters ${\alpha},{\beta}$. Matlab internal function, "fzero" was applied to find ${\lambda}={\alpha}/{\beta}$ which is solution of nonlinear equation linearly related with two wave parameter $T_1$ and $T_2$. The calculation results for 10/350${\mu}s$ lightning impulse current show very good accuracy with error less 0.03%. Two type of 10/350${\mu}s$ ICGs based on the calculated design circuit parameters were fabricated by considering the load variation. One is applicable to the MOV based Surge protective device(SPD) for less 15 kA and the other is to test small resistive devices such as spark gap arrester and bonding device with maximum current capability 30 kA. The tested waveforms show error within 10% in comparison with the designed estimation and the waveform tolerance recommended in the IEC 61643-1 and IEC 60060-1.