DOI QR코드

DOI QR Code

A Study on the Band Characteristics of ZnSe Thin Film with Zinc-blende Structure

Zinc Blende 구조를 가지는 ZnSe 결정의 밴드 특성에 관한 연구

  • Park, Jeong-Min (Department of Chemical Engineering, Kwangwoon University) ;
  • Kim, Hwan-Dong (Department of Chemical Engineering, Kwangwoon University) ;
  • Yoon, Do-Young (Department of Chemical Engineering, Kwangwoon University)
  • Received : 2011.07.29
  • Accepted : 2011.08.04
  • Published : 2011.08.31

Abstract

ZnSe, as a II-VI compound semiconductor which has a wide band gap in the visible region is applicable to the various fields such as laser diode, display and solar cell. By using the electrochemical deposition method, ZnSe thin film was synthesized on the ITO glass substrate. The synthesis of ZnSe grains and their structure having zinc blende shape were verified through the analysis of XRD and SEM. UV spectrophotometric method determined the band gap as the value of 2.76 eV. Applying the DFT (Density Functional Theory) in the molecular dynamics, the band structure of ZnSe grains was analyzed. For ZnSe grains with zinc blende structure, the band structure and its density of state were simulated using LDA (Local Density Approximation), PBE (Perdew Burke Ernzerhof), and B3LYP (Becke, 3-parameter, Lee-Yang-Parr) functionals. Among the calculations of energy band gap upon each functional, the simulated one of 2.65 eV based on the B3LYP functional was mostly near by the experimental measurement.

ZnSe는 가시광선 영역에서 넓은 밴드갭을 가지고 있는 II-VI족 화합물 반도체 소자로서 레이저 다이오드, 디스플레이 그리고 태양전지와 같은 다양한 응용분야에 적용되고 있다. 본 연구에서는 전기화학적 전착방법을 이용하여 ITO 전극상에 ZnSe 박막을 합성하여, XRD와 SEM으로 ZnSe 결정의 합성과 zinc blende 구조의 형태를 관측하였고, UV 분광기를 활용하여 밴드갭을 측정한 결과 2.76 eV이었다. 또한, 분자동역학에서 활용되는 밀도범함수 이론 (DFT, Density Functional Theory)을 도입하여 ZnSe 결정에 대한 밴드 구조의 해석을 수행하였다. Zinc blende구조를 갖는 ZnSe 결정에 대하여 LDA (Local Density Approximation), PBE (Perdew Burke Ernzerhof), 그리고 B3LYP (Becke, 3-parameter, Lee-Yang-Parr) 범함수를 이용하여 밴드구조와 상태밀도 (Density of State)를 모사하였다. 각각의 경우에 대해 에너지 밴드갭을 구한 결과, B3LYP 범함수로 해석한 경우에 실험치와 근사치인 2.65 eV의 밴드갭을 보여주었다.

Keywords

References

  1. Y. C. Lee, T. J. Kuo, C. J. Hsu, Y. W. Su and C. C. Chen, 'Fabrication of 3D macroporous structure of II-VI and III-Vsemiconductors using electrochemical deposition' Langmuir, 18, 9942 (2002). https://doi.org/10.1021/la020296h
  2. M. A. Haase, J. Qui, J. M. DePuydt and H. Cheng, 'Bluegreen laser diodes' J. Appl. Phys. Lett, 53, 1272 (1991).
  3. H. Jeon, J. Ding, A. V. Nurmikko, W. Xie, M. Kobayashi and R. L. Gunshor, 'ZnSe based multilayer pn junctions as efficient light emitting diodes for display applications' Appl. Phys. Lett., 60, 892 (1992). https://doi.org/10.1063/1.106496
  4. M. Afzaal and P. O'Brien, 'Recent developments in II-VI and III-VI semiconductors and their applications in solar cells' J. Mater. Chem., 16, 1597 (2006). https://doi.org/10.1039/b512182e
  5. O. Oda, "Compound Semiconductor Bulk Materials and Characterizations" World Sci., Singapore (2007).
  6. M. Davide, M. Carlo and M. Maurizio, 'A quantum chemistry investigation of the gas phase and surface chemistry of the MOCVD of ZnSe' J. Crystal Growth, 248, 31 (2003). https://doi.org/10.1016/S0022-0248(02)01836-5
  7. C. J. Brierley, C. M. Beck, G. R. Kennedy and D. Wheatley, 'The potential of CVD diamond as a replacement to ZnSe in $CO_2$ Laser optics' Diamond and Related Materials, 8, 1759 (1999). https://doi.org/10.1016/S0925-9635(99)00083-7
  8. T. Yamauchi, Y. Takahara, M. Naitoh and N. Narita, 'Growth mechanism of ZnSe single crystal by chemical vapor transport method' Physica B, 376, 778 (2006). https://doi.org/10.1016/j.physb.2005.12.195
  9. Manzoli, M. C. Santos and S. A. S. Machado, 'A voltammetric and nanogravimetric study of ZnSe electrodeposition from an acid bath containing Zn and Se' Thin Solid Films, 515, 6860 (2007). https://doi.org/10.1016/j.tsf.2007.02.030
  10. F. A. Kröger, 'Cathodic deposition and characterization of metallic or semiconducting binary alloys or compounds' J. Electrochem. Soc., 125, 12 (1978).
  11. K. Remigiusz, Z. Piotr and F. Krzysztof, 'Electrodeposition of ZnSe' Electrochim. Acta, 53, 21 (2008).
  12. S. Sanchez, C. Lucas, G. S. Picard, M. R. Bermejo and Y. Castrillejo, 'Molten salt route for ZnSe high-temperature electrosynthesis' Thin Solid Films, 361-362, 107 (2000). https://doi.org/10.1016/S0040-6090(99)00858-5
  13. H. Chermette, 'Density functional theory: A powerful tool for theoretical studies in coordination chemistry' Coord. Chem. Rev., 699, 178 (1998).
  14. P. A. Dirac, Proc. 'Note on exchange phenomena in the Thomas atom' Cambridge Philos. Soc., 26, 376 (1930). https://doi.org/10.1017/S0305004100016108
  15. A. D. Becke, 'Density functional calculations of molecular bond energies' J. Chem. Phys., 84, 4524 (1986).
  16. J. P. Perdew and Y. Wang, 'Accurate and simple density functional for the electronic exchange energy: Generalized gradient approximation' Phys. Rev. B, 33, 8800 (1986). https://doi.org/10.1103/PhysRevB.33.8800
  17. D. C. Langreth and J. P. Perdew, 'Exchange-correlation energy of a metallic surface: Wave-vector analysis' Phys. Rev. B, 15, 2884 (1977). https://doi.org/10.1103/PhysRevB.15.2884
  18. A. D. Becke, 'Density-functional thermochemistry. III. The role of exact exchange' J. Chem. Phys., 98, 5648 (1993). https://doi.org/10.1063/1.464913
  19. C. Kittel, "Introduction to solid state physics 8 ed." John Wiley & Sons, Inc., New York (2005).
  20. R. W. G. Wyckoff, "Crystal Structures" Interscience, London (1987).
  21. A. F. Wells, "Structural Inorganic Chemistry" Oxford University Press, New York (1987).
  22. G. Dresselhaus, 'Spin-orbit coupling effects in zinc blende structures' Phys. Rev., 100, 580 (1955).
  23. W. Kohn, L. J. Sham, 'Self-Consistent equations including exchange and correlation effects' Phys. Rev. A, 140, 1133 (1965). https://doi.org/10.1103/PhysRev.140.A1133
  24. K. H. Hellwege, O. Madelung and Landolt-Börnstein, "Numerical data and functional relationships in science and technology" Springer, New York (1982).
  25. R. Asahi, W. Mannstadt and A. J. Freeman, 'Optical properties and electronic structures of semiconductors with screened-exchange LDA' Phys. Rev. B, 59, 7486 (1999). https://doi.org/10.1103/PhysRevB.59.7486
  26. J. P. Perdew, K. Burke and M. Ernzerhof, 'Generalized gradient approximation made simple' Phys. Rev. Lett., 77, 3865 (1996). https://doi.org/10.1103/PhysRevLett.77.3865
  27. A. Kathalingam, T. Mahalingam and C. Sanjeeviraja, 'Optical and structural study of electrodeposited zinc selenide thin films' Mat. Chem. Phys., 106, 215 (2007). https://doi.org/10.1016/j.matchemphys.2007.05.051
  28. D. Vogle, P. Krüger and J. Pollmann, 'Ab initio electronicstructure calculations for II-VI semiconductors using selfinteraction- corrected pseudopotentials' Phys. Rev. B, 52, 316 (1995). https://doi.org/10.1103/PhysRevE.52.316
  29. H. Dixit, R. Saniz, D. Lamoen and B. Partoens, 'The quasiparticle band structure of zincblende and rocksalt ZnO' J. Phys.: Condens. Matter., 22, 125505 (2010). https://doi.org/10.1088/0953-8984/22/12/125505