DOI QR코드

DOI QR Code

A Study on the Computational Simulation of Cyclic Voltammetry using Semi-infinite Diffusion Model

반무한 확산모델을 이용한 순환전위법의 전산모사에 관한 연구

  • Cho, Ha-Na (Department of Chemical Engineering, Kwangwoon University) ;
  • Kim, Tae-Yong (Department of Chemical Engineering, Kwangwoon University) ;
  • Yoon, Do-Young (Department of Chemical Engineering, Kwangwoon University)
  • Received : 2011.07.29
  • Accepted : 2011.08.04
  • Published : 2011.08.31

Abstract

The transport phenomena of electron and ion around the electrode have been analyzed, herein the computational program to simulate the electrochemical signal of cyclic voltammetry has been implemented. For the dominant mass-transfer system, the governing equation and its boundary conditions are confined to the semi-infinite diffusion model and the reversible reaction at the electrode. In order to obtain the numerical solutions of cyclic voltammetry, MATLAB was used for the explicit finite difference method. Experimental results from the cyclic voltammetry of electrochemical system(10 mM $K_3Fe(CN)_6$ and 0.1M KCl) upon the ITO glass substrate were compared with the numerical solutions. Present program explains the experimental results fairly well, where they approached the simulated ones closely with deceasing the scan rate. Furthermore, the effects of electrode area, electrochemical reaction constants and transfering coefficients in the cyclic voltammetry were discussed quantitatively.

본 연구에서는 순환전위법으로 발생되는 전기화학적 신호를 모사하기 위한 전산프로그램을 구현하여, 전극주변에서 발생하는 전자 및 이온의 전달현상을 해석하였다. 물질확산이 지배적인 계에 대하여 반무한 확산모델과 전극반응만을 고려하여 지배방정식과 경계조건을 설정하였다. 순환전위법의 수치해를 구하기 위하여 양함수 유한차분법을 적용하였으며, MATLAB을 이용하여 프로그램을 작성하였다. 10 mM의 $K_3Fe(CN)_6$와 0.1 M KCl 전기화학계를 이용하여 ITO glass 전극에서 순환전위법을 실시하여 실험의 결과와 수치해를 비교하였다. 본 연구에서 구현된 프로그램은 실험 결과를 전반적으로 잘 예측하고 있으며, 특히 주사속도가 낮을수록 실험결과들이 수치해에 보다 근접하고 있었다. 주사속도에 부가하여 순환전위법에서 전극면적, 전극반응속도상수 그리고 전자이동수의 영향들을 정량적으로 고려할 수 있었다.

Keywords

References

  1. K. B. Oldham and J. C. Myland, "Fundamentals of Electrochemical Science" Academic Press, London (1994).
  2. M. Levi, 'The mechanism of lithium intercalation in graphite film electrodes in aprotic media. Part 1. High resolution slow scan rate cyclic voltammetric studies and modeling' J. Electroanal. Chem., 421, 79 (1997). https://doi.org/10.1016/S0022-0728(96)04832-2
  3. Y. Ma, J. Di, X. Yan, M. Zhao, Z. Lu and Y. Tu, 'Direct electrodeposition of gold nanoparticles on indium tin oxide surface and its application' Biosensors and Bioelectronics, 24, 1480, (2009). https://doi.org/10.1016/j.bios.2008.10.007
  4. G. I. Kim, K. W. Kim, M. K. Oh and Y. M. Sung, 'Electrochemical detection of vascular endothelial growth factors (VEGFs) using VEGF antibody fragments modified Au NPs/ITO electrode' Biosensors and Bioelectronics, 25, 1717 (2010). https://doi.org/10.1016/j.bios.2009.12.015
  5. A. Yu, Z. Liang, J. Cho and F. Caruso, 'Nanostructured electrochemical sensor based on dense gold nanoparticle films' Nano Lett., 3, 1203 (2003). https://doi.org/10.1021/nl034363j
  6. P. M. S. Monk, "Fundamentals of electroanalytical chemistry" John Wiley & Sons Inc, New York (2001).
  7. R. S. Nicholson and I. Shain, 'Theory of stationary electrode polarography single scan and cyclic methods applied to reversible irreversible and kinetic system' Anal. Chem., 36, 706 (1964). https://doi.org/10.1021/ac60210a007
  8. B. Speiser, 'From cyclic voltammetry to scanning electrochemical microscopy: Modern electroanalytical methods to study organic compounds, materials, and reactions' Curr. Org. Chem, 3, 171 (1999).
  9. R. S. Nicholson, 'Theory and application of cyclic voltammetry for measurement of electrode reaction kinetics' Anal. Chem., 37, 1351 (1965). https://doi.org/10.1021/ac60230a016
  10. N. P. C. Stevens and A. C. Fisher, 'Finite element simulations in electrochemistry. 2. Hydrodynamic voltammetry' J. Phys. Chem. B, 101, 8259 (1997). https://doi.org/10.1021/jp971529u
  11. P. J. Rodgers and S. Amemiya, 'Cyclic voltammetry at micropipet electrodes for the study of ion-transfer kinetics at liquid/liquid interfaces' Anal. Chem., 79, 9276 (2007). https://doi.org/10.1021/ac0711642
  12. J. Guo and E. Lindner, 'Cyclic voltammograms at coplanar and shallow recessed microdisk electrode arrays: Guidelines for design and experiment' Anal. Chem., 81, 130 (2009). https://doi.org/10.1021/ac801592j
  13. D. K. Gosser and F. Zhang, 'A PC-based general program for the simulation and analysis of cyclic voltammetric experiments' Talanta, 38, 715 (1991). https://doi.org/10.1016/0039-9140(91)80191-2
  14. A. J. Bard and L. R. Faulkne, "Electrochemical Methods: Fundamentals and Applications" Wiley, New York (2001).
  15. S. W. Feldberg, 'Optimization of explicit finite-difference simulation of electrochemical phenomena utilizing an exponentially expanded space grid: Refinement of the Joslin-Pletcher algorithm' J. Electroanal Chem, 127, 1 (1981). https://doi.org/10.1016/S0022-0728(81)80462-7
  16. D. K. Gosser, Jr, "Cyclic Voltammetry : simulation and analysis of reaction mechanisms" VCH, New York (1993).
  17. K. Yokoyama and Y. Kayanuma, 'Cyclic voltammetric simulation for electrochemically mediated enzyme reaction and determination of enzyme kinetic constants' Anal. Chem., 70, 3368 (1998). https://doi.org/10.1021/ac9711807

Cited by

  1. Mechanistic modeling of cyclic voltammetry: A helpful tool for understanding biosensor principles and supporting design optimization vol.259, 2018, https://doi.org/10.1016/j.snb.2017.12.088