• Title/Summary/Keyword: Gap flow control

Search Result 120, Processing Time 0.028 seconds

A flow control scheme for handoff on ATM-based PCN (ATM 기반 개인 휴대 통신망에서의 핸드오프를 위한 흐름 제어 방안)

  • 심재정;강경훈;장경훈;김덕진
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.34S no.10
    • /
    • pp.9-25
    • /
    • 1997
  • Personal Communication Networks will be composed of ATM-based broadband ISDN in the future. However, unlike the wired networks, many challenges will arise in the wireless communication service such as PCS. These callenges are frequency alteration of cell routing path, relatively very high error rate at transmission over the wireless interface, etc. Particularly, the alteration of cell routing path caused by handoff makes temporary deterioration of QoS. In this paper, the signaling flows of handoff scenarios which may occur on Personal Communication Networks are presented, and verified by Pertri-Net toolkit. In addition, the cell flow control scheme which minimizes the lagging gap between cells and maintains the cell sequence during handoff is proposed. The proposed scheme can be summarized as the differentiation of normal queue and handoff queue, and the cell flow control between these queues. For verification of the proposed scheme, we used two approaches, which are mathermatical manipulation and SLAM simulation.

  • PDF

Tolerance Analysis and Design of Refrigerator Door System for Functional and Aesthetic Quality of Gap and Flush (갭과 단차의 기능 및 심미적 품질을 고려한 냉장고 도어 시스템의 공차해석 및 설계)

  • Kim, Jinsu;Kim, Jae-Sung;Yim, Hyunjune
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.1
    • /
    • pp.59-66
    • /
    • 2014
  • The central seam, the vertical 'line' between doors, in the front view of a refrigerator must have its gap and flush within certain ranges to meet functional and aesthetic requirements. The conventional criteria for gap and flush control in the industry are to keep the gap and flush within certain ranges at each of various points along the seam. For aesthetics, however, the uniformity of the gap is also as important because a 'tapered' seam is negatively perceived by human eyes. This paper shows a case study of tolerance design for a refrigerator door system. It presents a step-by-step procedure, which consists of datum flow chain analysis, identification of assembly features, computer modeling of feature tolerances, assembly operations and measurements, tolerance simulation, and tolerance adjustments based on the simulation results. It is found that extra care may need to be used to satisfy the aesthetical criterion for gap uniformity.

Prediction on Throttling Performance of a Movable Sleeve Injector for Deep Throttling (딥 스로틀링 가변 슬리브 인젝터의 추력제어 성능예측)

  • Park, Sunjung;Nam, Jeongsoo;Lee, Keonwoong;Koo, Jaye;Hwang, Yongsok
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.6
    • /
    • pp.487-495
    • /
    • 2018
  • Experimental analysis of the spray characteristics of the movable sleeve injector, which can simultaneously control the area of the annular gap and the pintle gap, has been studied and a method for controlling the uniform performance over a wide thrust range has been studied. It is confirmed that the design flow rate is not satisfied when the constant pressure difference is set regardless of the opening distance of the sleeve. In order to improve this, the differential pressure in the annular gap and the pintle gap was applied differently according to the opening distance. It was confirmed that the design flow rate was satisfied within the operating range and thrust control was linear from 25% to 100% in linear sleeve area.

The Characteristics of Current Distribution and Electrical Insulation on High-Tc Superconducting Cable (고온 초전도 케이블의 전류 분포 및 전기절연 특성)

  • ;;;;Takataro Hamajima
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.52 no.6
    • /
    • pp.271-277
    • /
    • 2003
  • It is important to control layer current distributions of coaxial multi-layer HTS cables, because a homogeneous layer current distribution decreases AC loss and can supply the largest operational current. We have extended the theory that treat the operational current more than the critical current by considering V-I nonlinear characteristics of HTS tapes including flux flow resistance and contacting resistance between the cable and terminals. It is important to investigate the current distribution under the condition of operational current more than the critical current of cable, because the cable has experiences of fault current. In order to verify the extended theory, we have fabricated a two layers cable with the same twisting layer pitch. It was observed that almost all the operational current less than the critical current flowed on the outer layer because of its lower inductance. In case of operational current more than critical currents of layers, the flux flow resistances affect strongly current waveform and thereby the currents of layers were determined by the flux flow resistances. And we investigated breakdown characteristics in $LN_{2}$/paper composite insulation system for the application to a HTS cable. In this experiment, we got some information out of that the electrical characteristics of the insulation materials depends on the condition of butt gap.

Traffic control technologies without interruption for component replacement of long-span bridges using microsimulation and site-specific data

  • Zhou, Junyong;Shi, Xuefei;Zhang, Liwen;Sun, Zuo
    • Structural Engineering and Mechanics
    • /
    • v.70 no.2
    • /
    • pp.169-178
    • /
    • 2019
  • The replacement of damaged components is an important task for long-span bridges. Conventional strategy for component replacement is to close the bridge to traffic, so that the influence of the surrounding environment is reduced to a minimum extent. However, complete traffic interruption would bring substantial economic losses and negative social influence nowadays. This paper investigates traffic control technologies without interruption for component replacement of long-span bridges. A numerical procedure of traffic control technologies is proposed incorporating traffic microsimulation and site-specific data, which is then implemented through a case study of cable replacement of a long-span cable-stayed bridge. Results indicate traffic load effects on the bridge are lower than the design values under current low daily traffic volume, and therefore cable replacement could be conducted without traffic control. However, considering a possible medium or high level of daily traffic volume, traffic load effects of girder bending moment and cable force nearest to the replaced cable become larger than the design level. This indicates a potential risk of failure, and traffic control should be implemented. Parametric studies show that speed control does not decrease but increase the load effects, and flow control using lane closure is not effectual. However, weight control and gap control are very effective to mitigate traffic load effects, and it is recommended to employ a weight control with gross vehicle weight no more than 65 t or/and a gap control with minimum vehicle gap no less than 40 m for the cable replacement of the case bridge.

A Study of Flow Characteristics using Reynold's Equation on Mass Flow Controller Actuated by Piezoelectric Material (압전체로 구동되는 질량흐름 제어기에서 레이놀즈 방정식을 이용한 유량 특성 연구)

  • Lee, S.K.;Kim, Y.S.
    • Journal of Power System Engineering
    • /
    • v.7 no.3
    • /
    • pp.69-73
    • /
    • 2003
  • In this paper, the relation between displacement of piezoelectric disk and electric field was proposed. From Navier-Stokes equation and Reynold's equation, the relation between flow and gap of plate was determined. This models were further verified by experiments. Based on theoretical study and experimental verification, the proposed model between flow rate and voltage can be used in the design of mass flow controller in gas supplying system.

  • PDF

Flow of a low concentration polyacrylamide fluid solution in a channel with a flat plate obstruction at the entry

  • Kabir, M.A.;Khan, M.M.K.;Rasul, M.G.
    • Korea-Australia Rheology Journal
    • /
    • v.16 no.2
    • /
    • pp.63-73
    • /
    • 2004
  • Flow in a channel with an obstruction at the entry can be reverse, stagnant or forward depending on the position of the obstruction. These flow phenomena have potential applications in the control of energy and various flows in process engineering. Parameters that affect this flow inside and around the test channel are the gap (g) between the obstruction geometry and the test channel, the Reynolds number (Re) and the length (L) of the test channel. The influence of these parameters on the flow behavior was investigated using a flat plate obstruction at the entry of the channel. A low concentration polyacrylamide solution (0.018% by weight) showing a powerlaw fluid behavior was used as the fluid in this investigation. The flow phenomena were investigated by the velocity measurement and the flow visualization and their results were compared with numerical simulation. These results of low concentration polyacrylamide solution are also compared with the results of water published elsewhere (Kabir et al., 2003). The maximum reverse flow inside the test channel observed was 20% - 30% of the outside test channel velocity at a g/w (gap to width) ratio of 1 for Reynolds numbers of 1000 to 3500. The influence of the test channel length (L) and the Reynolds number (Re) on the velocity ratio ($V_i$/$V_o$: inside velocity/outside velocity in the test channel) are also presented and discussed here.

Analysis of leakage factors affecting ECV performance in variable compressor

  • Mahmud, Md. Iqbal;Cho, Haeng Muk
    • Journal of Energy Engineering
    • /
    • v.23 no.4
    • /
    • pp.183-188
    • /
    • 2014
  • Solenoid operated electromagnetic control valve (ECV) using in an external variable displacement swash plate type compressor is widely used for air conditioning control system because of its low energy consumption and high efficient characteristics. ECV controls the entire vehicle air conditioning system by means of a pulse width modulation (PWM) system that supplied from an external controller. Different pressure ports located within ECV has important functions to control the air/refrigerant flow through its internal passages. The flow paths are preciously maintained with acceptable ranges of leakage (gap) between the parts inside it which is followed by effective design and critical dimensioning of its internal features. Therefore, it saves energy losses from the solenoid operation as well as ensures the balance of forces within it. The research paper highlights analysis of the leakages (at different pressure ports) and dimensioning tolerance factors that affects the ECV performance.

Dynamic Characteristics of ER Mounts with different operation modes (작동모드에 따른 ER마운트의 동특성 해석)

  • 홍성룡;최승복;정우진;함일배;김두기
    • Journal of KSNVE
    • /
    • v.10 no.5
    • /
    • pp.819-829
    • /
    • 2000
  • Dynamic Characteristics of two different types of ER(electro-rheological)mounts ; flow and shear mode types are analyzed and compared. As a first step, field-dependent Bingham models of a chemically treated starch/silicone oil-based ER fluid are empirically identified under both flow and shear mode conditions. The models are them incorporated to the governing equation of the corresponding mode ER mount. For the reasonable comparison between two ER mounts, electrode parameters such as electrode gap are designed to be same. Dynamic stiffness and displacement transmissibility of each ER mount are evaluated in frequency domain with respect to the intensity of electric filed. In addition, vibration control capability of each ER mount is investigated in both frequency and time domains by employing the skyhook controller.

  • PDF

Band-Gap Reference Voltage Control Strategy for Fuel Cell Hybrid Vehicle

  • Kim, Young-Do;Park, Ki-Bum;Kim, Chong-Eun;Moon, Gun-Woo
    • Proceedings of the KIPE Conference
    • /
    • 2007.07a
    • /
    • pp.163-165
    • /
    • 2007
  • Generally, the power management system of fuel cell hybrid vehicle (FCHV) requires a unidirectional DC/DC converter for the fuel cell (FC) and a bidirectional DC/DC converter for the battery. To manage the various power flows between these modules with a simple way, a new band-gap reference voltage (BGRV) control strategy is proposed. The proposed method easily controls this variable power flow by setting the reference voltages of each converter to slightly different values, and it can be simply implemented by commercial controllers as well. The operational principle of proposed method is presented and verified experimentally by the 400W prototype.

  • PDF