• Title/Summary/Keyword: Gap 제어

Search Result 513, Processing Time 0.024 seconds

Design of Fault Tolerant Controller for Electromagnetic Supension System (자기부상시스템에서의 내고장성 제어기 설계)

  • Seong, Ho-Gyeong;Jo, Heung-Jae;Jeong, Seok-Yeong;Seong, So-Yeong
    • 연구논문집
    • /
    • s.30
    • /
    • pp.79-92
    • /
    • 2000
  • Chopper and sensors failures resulting from electric shock and mechanical vibration generated by rail irregularities are the serious problem deteriorating the performance in the electromagnetic suspension systems. Thus, this paper proposes a reliable output feedback control scheme for the electromagnetic suspension systems in the present of chopper, gap sensor and acceleration sensor failures. The designed controller is an extended version of a novel design technique which has the design method of the output feedback controller using dynamic compensator. The benefits of this scheme are demonstrated through the simulation and experimental results for proposed controller against chopper, gap sensor and acceleration sensor failures of electromagnetic suspension system.

  • PDF

A Programmable Electronic Systems Dedicated to Safety Related Applications (안전성이 요구되는 응용분야에 사용하는 프로그램 가능한 전자시스템)

  • Jeong, Sun-Gi;Wolfgang A. Halang;Coen Bron
    • The Transactions of the Korea Information Processing Society
    • /
    • v.1 no.4
    • /
    • pp.438-451
    • /
    • 1994
  • A low complexity, fault detecting computer architecture for utilisation in programmable logic controllers is designed. The cyclic operating mode of PLCs and a specification level, graphical programming paradigm based on the interconnection of application oriented standard software function modules are architecturally supported. Thus, by design, there is no semantic gap between the programming and machine execution levels enabling the safety licensing of application software by an extremely simple, but rigorous method, viz, diverse back translation.

  • PDF

Design of Robust Controller for Electromagnetic Suspension System with Kalman Filter (칼만 필터를 이용한 자기부상 시스템의 강인제어기 설계)

  • Jang, S.M.;Sung, S.Y.;Sung, H.K.;Jo, H.J.
    • Proceedings of the KIEE Conference
    • /
    • 2000.07b
    • /
    • pp.1411-1413
    • /
    • 2000
  • Distubance of air-gap sensors by rail irregularities are the serious problem deteriorating the performance in the electromagnetic suspension (EMS) systems. Thus, this paper proposes the output feedback controller with discrete kalman filter for the EMS systems. The discrete kalman filter estimate true state value and output feedback controller guarantee stability. The benefit of this scheme are shown by simulation. Therefore air-gap disturbance are rejected successfully.

  • PDF

Implementation of GA Processor with Multiple Operators, Based on Subpopulation Architecture (분할구조 기반의 다기능 연산 유전자 알고리즘 프로세서의 구현)

  • Cho Min-Sok;Chung Duck-Jin
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.52 no.5
    • /
    • pp.295-304
    • /
    • 2003
  • In this paper, we proposed a hardware-oriented Genetic Algorithm Processor(GAP) based on subpopulation architecture for high-performance convergence and reducing computation time. The proposed architecture was applied to enhancing population diversity for correspondence to premature convergence. In addition, the crossover operator selection and linear ranking subpop selection were newly employed for efficient exploration. As stochastic search space selection through linear ranking and suitable genetic operator selection with respect to the convergence state of each subpopulation was used, the elapsed time of searching optimal solution was shortened. In the experiments, the computation speed was increased by over $10\%$ compared to survival-based GA and Modified-tournament GA. Especially, increased by over $20\%$ in the multi-modal function. The proposed Subpop GA processor was implemented on FPGA device APEX EP20K600EBC652-3 of AGENT 2000 design kit.

High Speed Direct Current Control for the 8/10 Bearingless SRM (8/10 베어링리스 SRM의 고속 직접전류제어)

  • Guan, Zhongyu;Ahn, Jin-Woo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.5
    • /
    • pp.690-697
    • /
    • 2012
  • Novel 8/10 bearingless switched reluctance motor, which can control rotor radial positions with magnetic force, is proposed. The motor has combined characteristics of switched reluctance motor and magnetic bearing. This paper proposes a air-gap control system method of suspending force control in a bearingless switched reluctance motor (BLSRM). The proposed radial force control scheme is independent to the torque winding current. A PI direct current control (DCC) controller and look-up table are used to maintain a constant rotor air-gap. From the analysis and the experimental results, it is shown that the proposed strategy is effective in realizing a naturally decoupled radial force control of BLSRM.

Experiment for Levitation Control of a Magnetic Levitation System Supplied with a Battery (배터리로 구동되는 자기부상 시스템의 부상제어 특성 실험)

  • Nam Yun-Ho;Park Seung-Chan
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.992-994
    • /
    • 2004
  • In this paper, hybrid electromagnets using NdFeB permenant magnet are designed by 3-dimensional finite element analysis. Four hybrid magnets levitate the carrier of which total weight including control circuits and battery is 14[kg]. The nominal air gap length of the hybrid magnet is 3[mm]. The control circuit consists of DSP, 4-quadrant chopper, and gap sensor as feedback sensors. As a result, some experimental results for the magnetic levitation control by PI feedback control theory are shown.

  • PDF

A Study on the Control System Design of Sensorless Magnetic Levitation System (센서리스 자기 부상계의 제어계 설계에 관한 연구)

  • 김창화;김영복;양주호
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1996.10a
    • /
    • pp.175-181
    • /
    • 1996
  • The magnetic levitation system is utilized in the magnetic bearing of high-speed rotor because of little friction, no lubrication, no noise and so on. The magnetic levitation system need the feedback controller for the stabilization of system, and gap sensors are usually used to measure the gap. The use of sensor is troublesome such as sensor trouble, discord between the measurement point and the control point etc. This paper presents the design of robust stabilizing controller by H$_{\infty}$ control theory using the sensorless method proposed already by authors in the magnetic levitation system. And we investigated both the validity of the designed controller and the usefulness of the sensorless method proposed by authors of magnetic levitation system through results of actual experiment..

  • PDF

Dynamic Contact of a Cantilever Beam with Rigid Wall Condition (강체벽과 충돌하는 외팔보의 진동)

  • Jang, Young-Ki;Kim, Jae-Ik;Kim, Kyu-Tae;Park, Nam-Gyu
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.11 s.104
    • /
    • pp.1255-1261
    • /
    • 2005
  • The dynamic contact model of a beam that contacts to a rigid wall in a reactor core was studied. The gap between the beam and contact wall results in dynamic contact accompanying inequality constraints. The inequality constraints can be relieved to an equality constraint problem by introducing a convex Penalty function. In this work, a beam with contact condition is formulated using quasi-convex penalty function and numerically solved. General coordinate solution is adopted to raise computational efficiency. Also nonlinearity is examined In the beam contacting to a rigid wall.

A Method for Access Control on Uncertain Context (불확정 상황정보 상에서의 접근제어 방식)

  • Kang, Woo-Jun
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.10 no.6
    • /
    • pp.215-223
    • /
    • 2010
  • New information technologies make it easy to access and acquire information in various ways. However, It also enable powerful and various threat to system security. The prominent database technology challenging these threats is access control. Currently, to keep pace with the new paradigms, new extended access control methods are challenged. We study access control with uncertain context. With respect to access control, it is possible that there is a discrepancy between the syntactic phrase in security policies and that in queries, called semantic gap problem. In our semantic access control, we extract semantic implications from context tree and introduce the measure factor to calculate the degree of the discrepancy, which is used to control the exceed privileges.

Dynamic Edger Control for the Precise Width Control at the Head, and Tail Ends of Hot Strip (열연강판 선후단부 폭 정밀도 개선을 위한 최적 엣저롤 개도 제어)

  • Chun, Myung-Sik;Yi, Joon-Jeong;Moon, Young-Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.23 no.7 s.166
    • /
    • pp.1196-1204
    • /
    • 1999
  • adaption of the model predictions is highly desirable. In general, the width deviation at the head and tail ends of strip may be different from that of the steady state region. Therefore, the dynamic edger corrections can be used to compensate the width deviations which would otherwise occur. For the precise width control, the effect of edger roll gap and rolling conditions on the width deviation of head and tail ends of strip has been investigated and the effective method to decrease width deviation has been proposed. On-line application of dynamic edger control method in this study shows about 50% width compensation at the head end of the strip, and near perfect compensation at the tail end of strip.