• Title/Summary/Keyword: Ganglionated plexus

Search Result 2, Processing Time 0.014 seconds

Neuromodulation for Atrial Fibrillation Control

  • Seil Oh
    • Korean Circulation Journal
    • /
    • v.54 no.5
    • /
    • pp.223-232
    • /
    • 2024
  • Trigger and functional substrate are related to the tone of autonomic nervous system, and the role of the autonomic nerve is more significant in paroxysmal atrial fibrillation (AF) compared to non-paroxysmal AF. We have several options for neuromodulation to help to manage patients with AF. Neuromodulation targets can be divided into efferent and afferent pathways. On the efferent side, block would be an intuitive approach. However, permanent block is hard to achieve due to completeness of the procedure and reinnervation issues. Temporary block such as botulinum toxin injection into ganglionated plexi would be a possible option for post-cardiac surgery AF. Low-level subthreshold stimulation could also prevent AF, but the invasiveness of the procedure is the barrier for the general use. On the afferent side, block is also an option. Various renal denervation approaches are currently under investigation. Auditory vagus nerve stimulation is one of the representative low-level afferent stimulation methods. This technique is noninvasive and easy to apply, so it has the potential to be widely utilized if its efficacy is confirmed.

Inducibility of human atrial fibrillation in an in silico model reflecting local acetylcholine distribution and concentration

  • Hwang, Minki;Lee, Hyun-Seung;Pak, Hui-Nam;Shim, Eun Bo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.20 no.1
    • /
    • pp.111-117
    • /
    • 2016
  • Vagal nerve activity has been known to play a crucial role in the induction and maintenance of atrial fibrillation (AF). However, it is unclear how the distribution and concentration of local acetylcholine (ACh) promotes AF. In this study, we investigated the effect of the spatial distribution and concentration of ACh on fibrillation patterns in an in silico human atrial model. A human atrial action potential model with an ACh-dependent $K^+$ current ($I_{KAch}$) was used to examine the effect of vagal activation. A simulation of cardiac wave dynamics was performed in a realistic 3D model of the atrium. A model of the ganglionated plexus (GP) and nerve was developed based on the "octopus hypothesis". The pattern of cardiac wave dynamics was examined by applying vagal activation to the GP areas or randomly. AF inducibility in the octopus hypothesis-based GP and nerve model was tested. The effect of the ACh concentration level was also examined. In the single cell simulation, an increase in the ACh concentration shortened $APD_{90}$ and increased the maximal slope of the restitution curve. In the 3D simulation, a random distribution of vagal activation promoted wavebreaks while ACh secretion limited to the GP areas did not induce a noticeable change in wave dynamics. The octopus hypothesis-based model of the GP and nerve exhibited AF inducibility at higher ACh concentrations. In conclusion, a 3D in silico model of the GP and parasympathetic nerve based on the octopus model exhibited higher AF inducibility with higher ACh concentrations.