DOI QR코드

DOI QR Code

Neuromodulation for Atrial Fibrillation Control

  • Seil Oh (Department of Internal Medicine, Seoul National University College of Medicine)
  • Received : 2024.02.01
  • Accepted : 2024.02.13
  • Published : 2024.05.01

Abstract

Trigger and functional substrate are related to the tone of autonomic nervous system, and the role of the autonomic nerve is more significant in paroxysmal atrial fibrillation (AF) compared to non-paroxysmal AF. We have several options for neuromodulation to help to manage patients with AF. Neuromodulation targets can be divided into efferent and afferent pathways. On the efferent side, block would be an intuitive approach. However, permanent block is hard to achieve due to completeness of the procedure and reinnervation issues. Temporary block such as botulinum toxin injection into ganglionated plexi would be a possible option for post-cardiac surgery AF. Low-level subthreshold stimulation could also prevent AF, but the invasiveness of the procedure is the barrier for the general use. On the afferent side, block is also an option. Various renal denervation approaches are currently under investigation. Auditory vagus nerve stimulation is one of the representative low-level afferent stimulation methods. This technique is noninvasive and easy to apply, so it has the potential to be widely utilized if its efficacy is confirmed.

Keywords

Acknowledgement

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (Ministry of Science and ICT) (No. 2020R1A2C110244513).

References

  1. Kim D, Yang PS, Joung B. Optimal rhythm control strategy in patients with atrial fibrillation. Korean Circ J 2022;52:496-512.
  2. Joglar JA, Chung MK, Armbruster AL, et al. 2023 ACC/AHA/ACCP/HRS guideline for the diagnosis and management of atrial fibrillation: a report of the American College of Cardiology/American Heart Association joint committee on clinical practice guidelines. Circulation 2024;149:e1-156.
  3. Janes RD, Brandys JC, Hopkins DA, Johnstone DE, Murphy DA, Armour JA. Anatomy of human extrinsic cardiac nerves and ganglia. Am J Cardiol 1986;57:299-309.
  4. Pauza DH, Skripka V, Pauziene N, Stropus R. Morphology, distribution, and variability of the epicardiac neural ganglionated subplexuses in the human heart. Anat Rec 2000;259:353-82.
  5. Chiou CW, Eble JN, Zipes DP. Efferent vagal innervation of the canine atria and sinus and atrioventricular nodes. The third fat pad. Circulation 1997;95:2573-84.
  6. Armour JA, Murphy DA, Yuan BX, Macdonald S, Hopkins DA. Gross and microscopic anatomy of the human intrinsic cardiac nervous system. Anat Rec 1997;247:289-98.
  7. Marron K, Wharton J, Sheppard MN, et al. Distribution, morphology, and neurochemistry of endocardial and epicardial nerve terminal arborizations in the human heart. Circulation 1995;92:2343-51.
  8. Benarroch EE. The arterial baroreflex: functional organization and involvement in neurologic disease. Neurology 2008;71:1733-8.
  9. Hoover DB, Isaacs ER, Jacques F, Hoard JL, Page P, Armour JA. Localization of multiple neurotransmitters in surgically derived specimens of human atrial ganglia. Neuroscience 2009;164:1170-9.
  10. Tai CT, Chiou CW, Chen SA. Interaction between the autonomic nervous system and atrial tachyarrhythmias. J Cardiovasc Electrophysiol 2002;13:83-7.
  11. Khan M, Kalahasti V, Rajagopal V, et al. Incidence of atrial fibrillation in heart transplant patients: long-term follow-up. J Cardiovasc Electrophysiol 2006;17:827-31.
  12. Cohn WE, Gregoric ID, Radovancevic B, Wolf RK, Frazier OH. Atrial fibrillation after cardiac transplantation: experience in 498 consecutive cases. Ann Thorac Surg 2008;85:56-8.
  13. Bettoni M, Zimmermann M. Autonomic tone variations before the onset of paroxysmal atrial fibrillation. Circulation 2002;105:2753-9.
  14. Lee SM, Choi EK, Chung GS, Oh S, Park KS. Quantification of cardiac autonomic nervous activities in ambulatory dogs by eliminating cardiac electric activities using cubic smoothing spline. Physiol Meas 2012;33:131-45.
  15. Choi EK, Shen MJ, Han S, et al. Intrinsic cardiac nerve activity and paroxysmal atrial tachyarrhythmia in ambulatory dogs. Circulation 2010;121:2615-23.
  16. Schauerte P, Scherlag BJ, Pitha J, et al. Catheter ablation of cardiac autonomic nerves for prevention of vagal atrial fibrillation. Circulation 2000;102:2774-80.
  17. Melo J, Voigt P, Sonmez B, et al. Ventral cardiac denervation reduces the incidence of atrial fibrillation after coronary artery bypass grafting. J Thorac Cardiovasc Surg 2004;127:511-6.
  18. Alex J, Guvendik L. Evaluation of ventral cardiac denervation as a prophylaxis against atrial fibrillation after coronary artery bypass grafting. Ann Thorac Surg 2005;79:517-20.
  19. Cummings JE, Gill I, Akhrass R, Dery M, Biblo LA, Quan KJ. Preservation of the anterior fat pad paradoxically decreases the incidence of postoperative atrial fibrillation in humans. J Am Coll Cardiol 2004;43:994-1000.
  20. Wu CC, Russell RM, Karten HJ. The transport rate of cholera toxin B subunit in the retinofugal pathways of the chick. Neuroscience 1999;92:665-76.
  21. Conte WL, Kamishina H, Reep RL. The efficacy of the fluorescent conjugates of cholera toxin subunit B for multiple retrograde tract tracing in the central nervous system. Brain Struct Funct 2009;213:367-73.
  22. Lee SR, Cho Y, Cha MJ, Choi EK, Seo JW, Oh S. Atrial innervation patterns of intrinsic cardiac autonomic nerves. J Korean Med Sci 2018;33:e253.
  23. Oh S, Zhang Y, Bibevski S, Marrouche NF, Natale A, Mazgalev TN. Vagal denervation and atrial fibrillation inducibility: epicardial fat pad ablation does not have long-term effects. Heart Rhythm 2006;3:701-8.
  24. Schwaiger M, Hutchins GD, Kalff V, et al. Evidence for regional catecholamine uptake and storage sites in the transplanted human heart by positron emission tomography. J Clin Invest 1991;87:1681-90.
  25. De Marco T, Dae M, Yuen-Green MS, et al. Iodine-123 metaiodobenzylguanidine scintigraphic assessment of the transplanted human heart: evidence for late reinnervation. J Am Coll Cardiol 1995;25:927-31.
  26. Wilson RF, Christensen BV, Olivari MT, Simon A, White CW, Laxson DD. Evidence for structural sympathetic reinnervation after orthotopic cardiac transplantation in humans. Circulation 1991;83:1210-20.
  27. Kaye DM, Esler M, Kingwell B, McPherson G, Esmore D, Jennings G. Functional and neurochemical evidence for partial cardiac sympathetic reinnervation after cardiac transplantation in humans. Circulation 1993;88:1110-8.
  28. Stark RP, McGinn AL, Wilson RF. Chest pain in cardiac-transplant recipients. Evidence of sensory reinnervation after cardiac transplantation. N Engl J Med 1991;324:1791-4.
  29. Grupper A, Gewirtz H, Kushwaha S. Reinnervation post-heart transplantation. Eur Heart J 2018;39:1799-806.
  30. Lee SR, Kang DY, Cho Y, et al. Early parasympathetic reinnervation is not related to reconnection of major branches of the vagus nerve after heart transplantation. Korean Circ J 2016;46:197-206.
  31. Kaseda S, Zipes DP. Supersensitivity to acetylcholine of canine sinus and AV nodes after parasympathetic denervation. Am J Physiol 1988;255:H534-9.
  32. Bibevski S, Dunlap ME. Ganglionic mechanisms contribute to diminished vagal control in heart failure. Circulation 1999;99:2958-63.
  33. Bibevski S, Zhou Y, McIntosh JM, Zigmond RE, Dunlap ME. Functional nicotinic acetylcholine receptors that mediate ganglionic transmission in cardiac parasympathetic neurons. J Neurosci 2000;20:5076-82.
  34. Kauer JA, Malenka RC. Synaptic plasticity and addiction. Nat Rev Neurosci 2007;8:844-58. 
  35. Ashton JL, Burton RA, Bub G, Smaill BH, Montgomery JM. Synaptic plasticity in cardiac innervation and its potential role in atrial fibrillation. Front Physiol 2018;9:240.
  36. Shi S, Liu T, Wang D, et al. Activation of N-methyl-d-aspartate receptors reduces heart rate variability and facilitates atrial fibrillation in rats. Europace 2017;19:1237-43.
  37. Oh S, Choi EK, Zhang Y, Mazgalev TN. Botulinum toxin injection in epicardial autonomic ganglia temporarily suppresses vagally mediated atrial fibrillation. Circ Arrhythm Electrophysiol 2011;4:560-5.
  38. Pokushalov E, Kozlov B, Romanov A, et al. Botulinum toxin injection in epicardial fat pads can prevent recurrences of atrial fibrillation after cardiac surgery: results of a randomized pilot study. J Am Coll Cardiol 2014;64:628-9.
  39. Pokushalov E, Kozlov B, Romanov A, et al. Long-term suppression of atrial fibrillation by botulinum toxin injection into epicardial fat pads in patients undergoing cardiac surgery: one-year follow-up of a randomized pilot study. Circ Arrhythm Electrophysiol 2015;8:1334-41.
  40. Romanov A, Pokushalov E, Ponomarev D, et al. Long-term suppression of atrial fibrillation by botulinum toxin injection into epicardial fat pads in patients undergoing cardiac surgery: three-year follow-up of a randomized study. Heart Rhythm 2019;16:172-7.
  41. Waldron NH, Cooter M, Haney JC, et al. Temporary autonomic modulation with botulinum toxin type A to reduce atrial fibrillation after cardiac surgery. Heart Rhythm 2019;16:178-84.
  42. Shen MJ, Shinohara T, Park HW, et al. Continuous low-level vagus nerve stimulation reduces stellate ganglion nerve activity and paroxysmal atrial tachyarrhythmias in ambulatory canines. Circulation 2011;123:2204-12.
  43. Yu L, Scherlag BJ, Sha Y, et al. Interactions between atrial electrical remodeling and autonomic remodeling: how to break the vicious cycle. Heart Rhythm 2012;9:804-9.
  44. Stavrakis S, Humphrey MB, Scherlag B, et al. Low-level vagus nerve stimulation suppresses post-operative atrial fibrillation and inflammation: a randomized study. JACC Clin Electrophysiol 2017;3:929-38.
  45. Cho Y, Cha MJ, Choi EK, Oh IY, Oh S. Effects of low-intensity autonomic nerve stimulation on atrial electrophysiology. Korean Circ J 2014;44:243-9.
  46. Yu L, Huang B, Wang Z, et al. Impacts of renal sympathetic activation on atrial fibrillation: the potential role of the autonomic cross talk between kidney and heart. J Am Heart Assoc 2017;6:e004716.
  47. Steinberg JS, Shabanov V, Ponomarev D, et al. Effect of renal denervation and catheter ablation vs catheter ablation alone on atrial fibrillation recurrence among patients with paroxysmal atrial fibrillation and hypertension: the ERADICATE-AF randomized clinical trial. JAMA 2020;323:248-55.
  48. Choe WS, Song WH, Jeong CW, Choi EK, Oh S. Anatomic conformation of renal sympathetic nerve fibers in living human tissues. Sci Rep 2019;9:4831.
  49. Kwon S, Choi EK, Ahn HJ, et al. Novel laparoscopic renal denervation immediately reduces atrial fibrillation inducibility: a swine model study. Sci Rep 2023;13:19679.
  50. Lomuscio A, Belletti S, Battezzati PM, Lombardi F. Efficacy of acupuncture in preventing atrial fibrillation recurrences after electrical cardioversion. J Cardiovasc Electrophysiol 2011;22:241-7.
  51. Butt MF, Albusoda A, Farmer AD, Aziz Q. The anatomical basis for transcutaneous auricular vagus nerve stimulation. J Anat 2020;236:588-611.
  52. Stavrakis S, Humphrey MB, Scherlag BJ, et al. Low-level transcutaneous electrical vagus nerve stimulation suppresses atrial fibrillation. J Am Coll Cardiol 2015;65:867-75.
  53. Stavrakis S, Stoner JA, Humphrey MB, et al. TREAT AF (Transcutaneous Electrical Vagus Nerve Stimulation to Suppress Atrial Fibrillation): a randomized clinical trial. JACC Clin Electrophysiol 2020;6:282-91.
  54. Lee SR, Lee JH, Choi EK, et al. Risk of atrial fibrillation and adverse outcomes in patients with cardiac implantable electronic devices. Korean Circ J 2024;54:13-27.
  55. Kwon S, Lee E, Ju H, et al. Machine learning prediction for the recurrence after electrical cardioversion of patients with persistent atrial fibrillation. Korean Circ J 2023;53:677-89.
  56. Svennberg E, Tjong F, Goette A, et al. How to use digital devices to detect and manage arrhythmias: an EHRA practical guide. Europace 2022;24:979-1005.
  57. Zepeda-Echavarria A, van de Leur RR, van Sleuwen M, et al. Electrocardiogram devices for home use: technological and clinical scoping review. JMIR Cardio 2023;7:e44003.