• 제목/요약/키워드: Galvanostatic

검색결과 166건 처리시간 0.021초

인산형 연료전지 발전성능에 미치는 반응기체 공급량 및 공급중단의 영향 (Effects of Reactant Gas Flow Rates and Starvation on Phosphoric Acid Fuel Cell Performance)

  • 송락현;김창수;최병우;최수현;신동렬
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1992년도 하계학술대회 논문집 B
    • /
    • pp.662-665
    • /
    • 1992
  • Effects of reactant gas flow rates and starvation on phosphoric acid fuel cell performance were studied. As the reactant gas flow rates increased, the cell performance increased and then the cell maintained constant performance. The optimum flow rates of hydrogen, oxygen and air under galvanostatic condition of 150 mA/$\textrm{cm}^2$ are found to be 3cc/min${\cdot}\textrm{cm}^2$, 4cc/min${\cdot}\textrm{cm}^2$, and 15cc/min${\cdot}\textrm{cm}^2$, respectively. Hydrogen and oxygen starvation resulted in voltage loss of about 5mV and 0-2mV, respectively. The voltage loss was independent of starvation time. These results were discussed from the point of view of electrochemical reaction of the cell.

  • PDF

산화철이 혼입된 다중벽탄소나노튜브 복합체의 제조 및 특성 (Preparation and Characterization of $Fe_3O_4$/MWNTs Composites)

  • 박수진;김영하
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2009년도 춘계학술대회 논문집
    • /
    • pp.406-409
    • /
    • 2009
  • In this work, the magnetite ($Fe_3O_4$)/multi-walled carbon nanotubes (MWNTs) composites for lithium secondary battery were prepared. Nano-$Fe_3O_4$ was deposited by chemical coprecipitation of $Fe^{2+}$ and $Fe^{3+}$ in the presence of MWNTs in alkaline solutions. Transmission electron spectroscopy (TEM) and X-ray diffraction (XRD) analyses indicated that nano-$Fe_3O_4$ particles had a good crystallinity of cubic specimens and many tiny particles attached on the surfaces of the MWNTs. The electrochemical properties of $Fe_3O_4$/MWNTs composites as anodes in lithium-secondary batteries were evaluated by cyclic voltammetry and galvanostatic charge/discharge techniques. The as-prepared $Fe_3O_4$/MWNTs composites showed an initial lithium storage capacity of 1120 mAh/g and a reversible capacity of 394 mAh/g after 100 cycles, demonstrating better performance than that of the commercial graphite anode materials.

  • PDF

용융탄산염형 연료전지의 NiO 공기극의 용해거동에 미치는 알루미나 코팅효과에 대한 연구 (A study on the effect of alumina coating on NiO dissolution in molten carbonate fuel cell)

  • 류보현;윤성필;한종희;남석우;임태훈;홍성안
    • 신재생에너지
    • /
    • 제1권1호
    • /
    • pp.64-71
    • /
    • 2005
  • The stability of alumina-coated NiO cathodes was studied in $Li_{0.62}/K_{0.38}$ molten carbonate electrolyte. Alumina was effectively coated on the porous Ni plate using galvanostatic pulse plating method. The deposition mechanism of alumina was governed by the concentration of hydroixde ions near the working electrode, which was controlled by the temperature of bath solution. Alumina-coated NiO cathodes were formed to $A1_2O_3-NiO$ solid solution by the oxidation process and their Ni solubilities were were than that of NiO up to the immersion time of 100h. However, their Ni solubilities increased and were similar to that of the bare NiO cathode after 100h. It was because aluminum into the solid solution was segregated to $\alpha-LiAlO_2$ on the NiO and its Product did not Play a role of the Physical barrier against NiO dissolution.

  • PDF

An ionic liquid incorporated gel polymer electrolyte for double layer capacitors

  • Perera, Kumudu S.;Prasadini, K.W.;Vidanapathirana, Kamal P.
    • Advances in Energy Research
    • /
    • 제7권1호
    • /
    • pp.21-34
    • /
    • 2020
  • Energy storage devices have received a keen interest throughout the world due to high power consumption. A large number of research activities are being conducted on electrochemical double layer capacitors (EDLCs) because of their high power density and higher energy density. In the present study, an EDLC was fabricated using natural graphite based electrodes and ionic liquid (IL) based gel polymer electrolyte (GPE). The IL based GPE was prepared using the IL, 1-ethyl-3-methylimidazolium trifluoromethanesulfonate (1E3MITF) with the polymer poly(vinyl chloride) (PVC) and the salt magnesium trifluoromethanesulfonate (Mg(CF3SO3)2 - MgTF). GPE was characterized by electrochemical impedance spectroscopy (EIS), DC polarization test, linear sweep voltammetry (LSV) test and cyclic voltammetry (CV) test. The maximum room temperature conductivity of the sample was 1.64 × 10-4 Scm-1. The electrolyte was purely an ionic conductor and the anionic contribution was prominent. Fabricated EDLC was characterized by EIS, CV and galvanostatic charge discharge (GCD) tests. CV test of the EDLC exhibits a single electrode specific capacitance of 1.44 Fg-1 initially and GCD test gives 0.83 Fg-1 as initial single electrode specific discharge capacitance. Moreover, a good stability was observed for prolonged cycling and the device can be used for applications with further modifications.

다공성 실리콘의 산화로부터 얻은 다공성 실리카의 산화에 대한 분석 (Analysis on Oxidation of Porous Silica Obtained from Thermal Oxidation of Porous Silicon)

  • 고영대
    • 통합자연과학논문집
    • /
    • 제3권3호
    • /
    • pp.153-156
    • /
    • 2010
  • Oxidation behaviors of porous silicon were investigated by the measurement of area of $SiO_2$ vibrational peaks in FT-IR spectra during thermal oxidation of porous silicon at corresponding temperatures. Visible photoluminescent porous silicon samples were obtained from an electrochemical etch of n-type silicon of resistivity between 1-10 ${\Omega}/cm$. The etching solution was prepared by adding an equal volume of pure ethanol to an aqueous solution of HF. The porous silicon was illuminated with a 300 W tungsten lamp for the duration of etch. Etching was carried out as a two-electrode galvanostatic procedure at applied current density of 200 $mA/cm^2$ for 5 min. The porosity of samples prepared was about 80%. After formation of porous silicon, the samples were thermally oxidized at $100^{\circ}C$, $200^{\circ}C$, $300^{\circ}C$, and $400^{\circ}C$, respectively. The growth rate of $SiO_2$ layer of porous silicon was investigated by using FT-IR spectroscopy. The effect of oxidation of porous silicon was presented.

Re-synthesis and Electrochemical Characteristics of LiFePO4 Cathode Materials Recycled from Scrap Electrodes

  • Kim, Hyung Sun;Shin, Eun Jung
    • Bulletin of the Korean Chemical Society
    • /
    • 제34권3호
    • /
    • pp.851-855
    • /
    • 2013
  • This paper describes an environmentally friendly process for the recovery of $LiFePO_4$ cathode materials from scrap electrodes by a simple thermal treatment method. The active materials were easily separated from the aluminum substrate foil and polymeric binders were also decomposed at different temperatures ($400^{\circ}C$, $500^{\circ}C$, $600^{\circ}C$) for 30 min under nitrogen gas flow. The samples were characterized by X-ray diffraction (XRD), scanning electronic microscopy (SEM), Raman spectroscopy, Thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC). The electrochemical properties of the recycled $LiFePO_4$ cathode were evaluated by galvanostatic charge and discharge modes. The specific charge/discharge capacities of the recycled $LiFePO_4$ cathode were similar to those of the original $LiFePO_4$ cathode. The $LiFePO_4$ cathode material recovered at $500^{\circ}C$ exhibits a somewhat higher capacity than those of other recovered materials at high current rates. The recycled $LiFePO_4$ cathode also showed a good cycling performance.

Effect of Electrolytes on Electrochemical Properties of Magnesium Electrodes

  • Ha, Se-Young;Ryu, Anna;Cho, Woosuk;Woo, Sang-Gil;Kim, Jae-Hun;Lee, Kyu Tae;Kim, Jeom-Soo;Choi, Nam-Soon
    • Journal of Electrochemical Science and Technology
    • /
    • 제3권4호
    • /
    • pp.159-164
    • /
    • 2012
  • Magnesium (Mg) deposition and dissolution behaviors of 0.2 M $MgBu_2-(AlCl_2Et)_2$, 0.5 M $Mg(ClO_4)_2$, and 0.4M $(PhMgCl)_2-AlCl_3$-based electrolytes with and without tris(pentafluorophenyl) borane (TPFPB) are investigated by ex situ scanning electron microscopy (SEM) and galvanostatic cycling of Mg/copper (Cu) cells. To ascertain the factors responsible for the anodic stability of the electrolytes, linear sweep voltammogrametry (LSV) experiments for various electrolytes and solvents are conducted. The effects of TPFPB as an additive on the anodic stability of 0.4M ($(PhMgCl)_2-AlCl_3$/THF electrolyte are also discussed.

Synthesis of $LiMn_2O_4$ Cathode Materials by Emulsion Method and Its Electrochemical Properties

  • Youn Kyu Choi;Bok Hee Kim
    • The Korean Journal of Ceramics
    • /
    • 제5권3호
    • /
    • pp.250-254
    • /
    • 1999
  • Synthesis of the spinel $LiMn_2O_4$ by emulsion method was investigated. $LiOH.H_2O \;and \;Mn(NO_3)_2.6H_2O$ were used as starting materials to prepare mixed aqueous solution (0.5 mol/$\ell$ for the $LiMn_2O_4$). Kerosene, paraffin oil and span 80 were used for organic phase. The aqueous solutioin and organic phase were mixed in the ratio of 2:1 and emulsified at the speed of 4000 rpm for 5 min. The prepared emulsions were dropped into the petroleum heated at $170^{\circ}C$ to evaporate water in the silicon oil bath, dried at $120^{\circ}C$ in the oven the remove petroleum and calcined at temperature ranges from 600 to $900^{\circ}C$ for 48 hrs. The characteristics of powders were investigated by XRD, SEM, BET and electrochemical properties of synthesized cathode materials were measured with Galvanostatic system. $Li_{1.05}Mn_2O_4$ calcined at $800^{\circ}C$ for 48 hrs showed initial discharge capacity of 125.9mAH/g.

  • PDF

금속 코발트의 부식과 부동화에 관한 연구 (A Study on Corrosion and Passivation of Cobalt)

  • 천정균;백운기
    • 대한화학회지
    • /
    • 제18권6호
    • /
    • pp.391-399
    • /
    • 1974
  • 금속 코발트의 부식과 부동화현상들을 전기화학적 실험방법들을 써서 연구하였다. Tafel slope, Flade potential의 pH의존도, 부식속도의 반응역학적 데이타등으로 부터 코발트와 붕산염완충용액 사이 계면에서 일어나는 부식과 부동화 과정들의 메카니즘을 도출하였다. 금속표면에 흡착된 히드록실기가 표면산화와 부동화막의 형성에 참여하는 것으로 나타났다. 표면막의 성장속도에 관한 데이타로 보아 부동화피막은 "전기장에 의한-이온-이동" 과정에 의하여 성장하는 것으로 보인다. 측정된 표면막의 두께는 약 10${\AA}$에서 20${\AA}$에 이르렀다.

  • PDF

황산용액에서 Al7075 합금 표면의 양극산화피막 형성거동 (Formation Behavior of Anodic Oxide Films on Al7075 Alloy in Sulfuric Acid Solution)

  • 문성모;양철남;나상조
    • 한국표면공학회지
    • /
    • 제47권4호
    • /
    • pp.155-161
    • /
    • 2014
  • The present work is concerned with the formation behavior of anodic oxide films on Al7075 alloy under a galvanostatic condition in 20 vol.% sulfuric acid solution. The formation behaviour of anodic oxide films was studied by the analyses of voltage-time curves and observations of colors, morphologies and thicknesses of anodic films with anodization time. Hardness of the anodic oxide films was also measured with anodization time and at different positions in the anodic films. Six different stages were observed with anodiziation time : barrier layer formation (stage I), pore formation (stage II), growth of porous films (stage III), abnormal rapid oxide growth (stage IV), growth of non-uniform oxide films (stage V) and breakdown of the thick oxide films under high anodic voltages (stage VI). Hardness of the anodic oxide films appeared to decrease with increasing anodization time and with the position towards the outer surface. This work provides useful information about the thickness, uniformity, imperfections and hardness distribution of the anodic oxide films formed on Al7075 alloy in sulfuric acid solution.