• Title/Summary/Keyword: Galvanic electricity

Search Result 3, Processing Time 0.016 seconds

Development of Automatic Grease Lubricator for Gas Generation Type of Galvanic Electricity (동전기적 가스발생방식의 자동윤활주유기 개발)

  • Wang, Duck-Hyun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.7 no.4
    • /
    • pp.121-127
    • /
    • 2008
  • Automatic grease lubricator is an equipment that provides adequate amount of fresh grease constantly to the shaft and bearings of machines. It minimizes the friction heat and reduces the friction loss of machines to the least. This paper is developing an automatic grease lubricator using a mode of the gas generation type from galvanic electricity. The ultimate goal of this equipment is to lubricate an adequate amount of grease with galvanic corrosion. In an electrolyte, combining anode(Mo) with cathode(Zn) is pressing out hydrogen gas of an galvanic element with galvanic reaction. The characteristics of this method is continuous flowing small hydrogen gas and controling the usage of the amount of the generation of hydrogen gas. The exterior body of grease lubricator was analyzed by Digital Mock-up of CATIA V5 and finite element analysis. The maximum stress is distributed over the outlet part where the grease lubricator suddenly narrowly contracts. The outlet part is analyzed with different constructed angle due to the different loading and setting angles. Using the analyzed design, RP trial products were producted and tested.

  • PDF

카본파이버 매트 전극접지 기술

  • Choe, Un-Gu;Eom, Ju-Hong;Kim, Gwang-Sun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.04c
    • /
    • pp.32-40
    • /
    • 2008
  • Recently, due to the onset of the information age, various high-priced, large-size machines have been invented such as intelligent building and high-tech computer operated facilities. Consequently, all kinds of electrical, electronic, and communication equipments and facilities have been found to be vulnerable even to small amounts of electrical shock. Interference between equipments and equipment malfunction occur because of various electromagnetic interferences. Galvanic action by direct current (D.C.) causes gas valve corrosion and other electrical problems such as static electricity and electromagnetic interference (EMI) occur as well. Most of the problems stated above occur because of problems in grounding.

  • PDF

Performances of Metallic (sole, composite) and Non-Metallic Anodes to Harness Power in Sediment Microbial Fuel Cells

  • Haque, Niamul;Cho, Daechul;Kwon, Sunghyun
    • Environmental Engineering Research
    • /
    • v.19 no.4
    • /
    • pp.363-367
    • /
    • 2014
  • One chambered sediment microbial fuel cell (SMFC) was equipped with Fe, brass (Cu/Zn), Fe/Zn, Cu, Cu/carbon cloth and graphite felt anode. Graphite felt was used as common cathode. The SMFC was membrane-less and mediator-less as well. Order of anodic performance on the basis of power density was Fe/Zn ($6.90Wm^{-2}$) > Fe ($6.03Wm^{-2}$) > Cu/carbon cloth ($2.13Wm^{-2}$) > Cu ($1.13Wm^{-2}$) > brass ($Cu/Zn=0.24Wm^{-2}$) > graphite felt ($0.10Wm^{-2}$). Fe/Zn composite anode have twisted 6.73% more power than Fe alone, Cu/carbon cloth boosted power production by 65%, and brass (Cu/Zn) produced 65% less power than Cu alone. Graphite felt have shown the lowest electricity generation because of its poor galvanic potential. The estuarine sediment served as supplier of oxidants or electron producing microbial flora, which evoked electrons via a complicated direct microbial electron transfer mechanism or making biofilm, respectively. Oxidation reduction was kept to be stationary over time except at the very initial period (mostly for sediment positioning) at anodes. Based on these findings, cost effective and efficient anodic material can be suggested for better SMFC configurations and stimulate towards practical value and application.