• Title/Summary/Keyword: Gallium Oxide

Search Result 196, Processing Time 0.026 seconds

Advances in Power Semiconductor Devices for Automotive Power Inverters: SiC and GaN (전기자동차 파워 인버터용 전력반도체 소자의 발전: SiC 및 GaN)

  • Dongjin Kim;Junghwan Bang;Min-Su Kim
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.30 no.2
    • /
    • pp.43-51
    • /
    • 2023
  • In this paper, we introduce the development trends of power devices which is the key component for power conversion system in electric vehicles, and discuss the characteristics of the next-generation wide-bandgap (WBG) power devices. We provide an overview of the characteristics of the present mainstream Si insulated gate bipolar transistor (IGBT) devices and technology roadmap of Si IGBT by different manufacturers. Next, recent progress and advantages of SiC metal-oxide-semiconductor field-effect transistor (MOSFET) which are the most important unipolar devices, is described compared with conventional Si IGBT. Furthermore, due to the limitations of the current GaN power device technology, the issues encountered in applying the power conversion module for electric vehicles were described.

The Investigation of Microwave irradiation on Solution-process amorphous Si-In-Zn-O TFT

  • Hwang, Se-Yeon;Kim, Do-Hun;Jo, Won-Ju
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.205-205
    • /
    • 2015
  • 최근, 비정질 산화물 반도체를 이용한 TFT는 투명성, 유연성, 저비용, 저온공정이 가능하기 때문에 차세대 flat-panel 디스플레이의 back-plane TFT로써 다양한 방면에서 연구되고 있다. 산화물 반도체 In-Zn-O-시스템에서는 Gallium (Ga)을 suppressor로 사용한 a-In-Ga-Zn-O (a-IGZO) 뿐만 아니라, Magnesium (Mg), Hafnium (Hf), Tin (Sn), Zirconium (Zr) 등의 다양한 물질이 연구되었다. 그 중 Silicon (Si)은 Ga, Hf, Sn, Zr, Mg과 같은 suppressor에 비해 구하기 쉬우며 가격적인 측면에서도 저렴하다는 장점이 있다. solution 공정으로 제작한 산화물 반도체 TFT는 진공 시스템을 사용한 공정보다 공정시간이 짧고, 저비용, 대면적화가 가능하다는 장점이 있다. 하지만, 투명하고 유연한 device를 제작하기 위해서는 저온 공정과 low thermal budget은 필수적이다. 이러한 측면에서 MWI (Microwave Irradiation)는 저온공정이 가능하며, 짧은 공정 시간에도 불구하고 IZO 시스템의 산화물 반도체의 전기적 특성 향상을 기대할 수 있는 효율 적인 열처리 방법이다. 본 연구에서는 In-Zn-O 시스템의 TFT에서 silicon (Si)를 Suppressor로 사용한 a-Si-In-Zn-O (SIZO) TFT를 제작하여 두 가지 열처리 방법을 사용하여 TFT의 전기적 특성을 확인하였다. 첫 번째 방법은 Box Furnace를 사용하여 N2 분위기에서 $600^{\circ}C$의 온도로 30분간 열처리 하였으며, 두 번째는 MWI를 사용하여 1800 W 출력 (약 $100^{\circ}C$)에 2분간 열처리 하였다. MWI 열처리는 Box Furnace 열처리에 비해 저온 공정 및 짧은 시간에도 불구하고 향상된 전기적 특성을 확인 할 수 있었다.

  • PDF

Current Increase Effect and Prevention for Electron Trapping at Positive Bias Stress System by Dropping the Nematic Liquid Crystal on the Channel Layer of the a-InGaZnO TFT's

  • Lee, Seung-Hyun;Heo, Young-Woo;Kim, Jeong-Joo;Lee, Joon-Hyung
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.163-163
    • /
    • 2015
  • The effect of nematic liquid crystal(5CB-4-Cyano-4'-pentylbiphenyl) on the amorphous indium gallium zinc oxide thin film transistors(a-IGZO TFTs) was investigated. Through dropping the 5CB on the a-IGZO TFT's channel layer which is deposited by RF-magnetron sputtering, properties of a-IGZO TFTs was dramatically improved. When drain bias was induced, 5CB molecules were oriented by Freedericksz transition generating positive charges to one side of dipoles. From increment of the capacitance by orientation of liquid crystals, the drain current was increased, and we analyzed these phenomena mathematically by using MOSFET model. Transfer characteristic showed improvement such as decreasing of subthreshold slope(SS) value 0.4 to 0.2 and 0.45 to 0.25 at linear region and saturation region, respectively. Furthermore, in positive bias system(PBS), prevention effect for electron trapping by 5CB liquid crystal dipoles was observed, which showing decrease of threshold voltage shift [(${\delta}V$]_TH) when induced +20V for 1~1000sec at the gate electrode.

  • PDF

GROWTH AND CHARACTERIZATION OF $La_3Ga_5SiO_{14}$ SINGLE CRYSTALS BY THE FLOATING ZONE METHOD

  • Yoon, Won-Ki;Auh, Keun-Ho
    • Proceedings of the Korea Association of Crystal Growth Conference
    • /
    • 1999.06a
    • /
    • pp.253-269
    • /
    • 1999
  • The development of telecommunication and information technology requires to develop new piezoelectric materials with small size, low impedance, wide pass band width and high thermal stability of frequency. Langasite (La3Ga5SiO14) single crystal has been researched substitute of quartz and LiNbO3 for the applications of SAW filter, BAW filter and resonator. Its single crystal growth has been carried out by Czochralski Method. So, in order to get single crystal with higher quality, in this study, lnagasite (La3Ga5SiO14) single crystal was grown by using Floating Zone (FZ) method and characterized. For the growth of langasite single crystals, the langasite powder was synthesized at 135$0^{\circ}C$ for 5hrs and the feed rod was sintered at 135$0^{\circ}C$ for 5hrs. The growing rate was 1.5mm/h and the rotation speed was 15 rpm for an upper rotation and 13 rpm for a lower rotation. In order to prevent the evaporation of gallium oxide, Ar and O2 gas mixture was flowed. The growth direction was analyzed by Laue back-scattered analysis. The composition of grown crystal was analyzed suing XRD and WDS. The electrical properties of grown crystal at various frequencies and temperature were discussed.

  • PDF

Electrical and Optical Properties of GZO Thin Films Using Substrate Bias Voltage for Solar Cell (기판 바이어스 전압을 이용한 태양전지용 GZO 박막의 전기적, 광학적 특성)

  • Kwon, Soon-Il;Park, Seung-Bum;Lee, Seok-Jin;Jung, Tae-Hwan;Yang, Kea-Jun;Park, Jea-Hwan;Choi, Won-Seok;Lim, Dong-Gun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.103-104
    • /
    • 2008
  • In this paper we report upon an investigation into the effect of DC bias voltage on the electrical and optical properties of Gallium doped zinc oxide (GZO) film. GZO films were deposited on glass substrate without substrate temperature by RF magnetron sputtering from a ZnO target mixed with 5 wt% $Ga_2O_3$. we investigated sample properties of bias voltage change in 0 to -60 V. We were able to achieve as low as $5.89\times10^{-4}$ ${\Omega}cm$ and transmittance over 87%. without substrate temperature.

  • PDF

RF Magentron Sputtering deposited by ZnO:Ga thin film characterization for a transparent thin film transistor an application (투명 박막 트랜지스터 응용을 위한 RF Magnetron Sputtering으로 증착된 ZnO:Ga 박막의 특성)

  • Lee, Seok-Jin;Kwon, Soon-Il;Park, Seung-Beum;Jung, Tae-Hwan;Lim, Dong-Gun;Park, Jea-Hwan;Yang, Kea-Joon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.146-147
    • /
    • 2008
  • In this paper we report upon an investigation into the effect of sputter RF power on the electrical properties of Gallium doped zinc oxide (ZnO:Ga) film. Structural, electrical and optical properties of the ZnO:Ga films were investigation in terms of the sputtering power. Working pressure fixed in 5 mtorr and RF powers the variable did with 50~100 W. The result, We were able to without substrate temperature obtain resistivity of $9.3\times10^{-4}{\Omega}cm$ and optical transmittance of 90%.

  • PDF

A comprehensive review on the modeling of smart piezoelectric nanostructures

  • Ebrahimi, Farzad;Hosseini, S.H.S.;Singhal, Abhinav
    • Structural Engineering and Mechanics
    • /
    • v.74 no.5
    • /
    • pp.611-633
    • /
    • 2020
  • In this paper, a comprehensive review of nanostructures that exhibit piezoelectric behavior on all mechanical, buckling, vibrational, thermal and electrical properties is presented. It is firstly explained vast application of materials with their piezoelectric property and also introduction of other properties. Initially, more application of material which have piezoelectric property is introduced. Zinc oxide (ZnO), boron nitride (BN) and gallium nitride (GaN) respectively, are more application of piezoelectric materials. The nonlocal elasticity theory and piezoelectric constitutive relations are demonstrated to evaluate problems and analyses. Three different approaches consisting of atomistic modeling, continuum modeling and nano-scale continuum modeling in the investigation atomistic simulation of piezoelectric nanostructures are explained. Focusing on piezoelectric behavior, investigation of analyses is performed on fields of surface and small scale effects, buckling, vibration and wave propagation. Different investigations are available in literature focusing on the synthesis, applications and mechanical behaviors of piezoelectric nanostructures. In the study of vibration behavior, researches are studied on fields of linear and nonlinear, longitudinal and transverse, free and forced vibrations. This paper is intended to provide an introduction of the development of the piezoelectric nanostructures. The key issue is a very good understanding of mechanical and electrical behaviors and characteristics of piezoelectric structures to employ in electromechanical systems.

A Qualitative Analysis on the Surface States at the Undoped Polycrystalline Si and GaAs Semiconductor Interfaces Using the Zeta Potential (Zeta 전위에 의한 도핑되지 않은 다결정 Si 및 GaAs 반도체 계면의 표면준위에 관한 정성적 해석)

  • Chun, Jang-Ho
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.24 no.4
    • /
    • pp.640-645
    • /
    • 1987
  • Surface states and interfacial phenomena at the undoped polycrystalline semiconductor particale-electrolyte interfaces were qualitatively analyzed based on the zeta potentials which were measured with microelectrophoresis measurements. The suspensions were composed of the undoped polycrystaline silicon(Si) or gallium arsenide (GaAs) semiconductor particles stalline Si and GaAs particles in the KCl electrolytes was 3.73~6.2x10**-4 cm\ulcornerV.sec and -2.3~1.4x10**-4cm\ulcornerV.sec at the same conditions, respectively. The range of zeta potentials corresponding to the electrophoretic mobilities is 47.8~80.1mV and -30.1~17.9mV, respectively. The variation of the zeta potentials of the undoped polycrystalline Si was similar to the doped crystalline Si. On the other hand, two points of zeta potential reversal occurred at the undoped polycrystalline GaAs-KCl electrolyte interfaces. The surface states of the undoped polycrystalline Si and GaAs were dominated by positively charged donor surface states. These surface states are attributed to adsorbed ion surface states (slow states) at the semiconductor oxide layer-electrolyte interfaces.

  • PDF

Characteristics of Ga2O3/4H-SiC Heterojunction Diode with Annealing Process (후열 처리에 따른 Ga2O3/4H-SiC 이종접합 다이오드 특성 분석)

  • Lee, Young-Jae;Koo, Sang-Mo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.33 no.2
    • /
    • pp.155-160
    • /
    • 2020
  • Ga2O3/n-type 4H-SiC heterojunction diodes were fabricated by RF magnetron sputtering. The optical properties of Ga2O3 and electrical properties of diodes were investigated. I-V characteristics were compared with simulation data from the Atlas software. The band gap of Ga2O3 was changed from 5.01 eV to 4.88 eV through oxygen annealing. The doping concentration of Ga2O3 was extracted from C-V characteristics. The annealed oxygen exhibited twice higher doping concentration. The annealed diodes showed improved turn-on voltage (0.99 V) and lower leakage current (3 pA). Furthermore, the oxygen-annealed diodes exhibited a temperature cross-point when temperature increased, and its ideality factor was lower than that of as-grown diodes.

A Study on the Efficiency Prediction of Low-Voltage and High-Current dc-dc Converters Using GaN FET-based Synchronous Rectifier (GaN FET 기반 동기정류기를 적용한 저전압-대전류 DC-DC Converter 효율예측)

  • Jeong, Jea-Woong;Kim, Hyun-Bin;Kim, Jong-Soo;Kim, Nam-Joon
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.22 no.4
    • /
    • pp.297-304
    • /
    • 2017
  • The purpose of this paper is to analyze losses because of switching devices and the secondary side circuit diodes of 500 W full bridge dc-dc converter by applying gallium nitride (GaN) field-effect transistor (FET), which is one of the wide band gap devices. For the detailed device analysis, we translate the specific resistance relation caused by the GaN FET material property into algebraic expression, and investigate the influence of the GaN FET structure and characteristic on efficiency and system specifications. In addition, we mathematically compare the diode rectifier circuit loss, which is a full bridge dc-dc converter secondary side circuit, with the synchronous rectifier circuit loss using silicon metal-oxide semiconductor (Si MOSFET) or GaN FET, which produce the full bridge dc-dc converter analytical value validity to derive the final efficiency and loss. We also design the heat sink based on the mathematically derived loss value, and suggest the heat sink size by purpose and the heat divergence degree through simulation.