• 제목/요약/키워드: Galileo/GPS Performance and Integrity Analysis

검색결과 6건 처리시간 0.018초

GPS와 Galileo의 무결성 보장 방법 조사 (Review of GPS and Galileo Integrity Assurance Procedure)

  • 우남규;남기훈;최헌호;이지윤
    • Journal of Positioning, Navigation, and Timing
    • /
    • 제13권1호
    • /
    • pp.53-61
    • /
    • 2024
  • Global Navigation Satellite Systems are expected to meet system-defined integrity requirements when users utilize the system for safety critical applications. While the guaranteed integrity performance of GPS and Galileo is publicly available, their integrity assurance procedure and related methodology have not been released to the public in an official document format. This paper summarizes the integrity assurance procedures of Global Positioning System (GPS) and Galileo, which were utilized during their system development, through a literature survey of their integrity assurance methodology. GPS Block II assures system integrity using the following methods: continuous performance monitoring and maintenance on Space Segment (SS) and Control Segment (CS), through a cause and effect analysis of anomalies and a failure analysis. In GPS Block III, to achieve more stringent integrity performance, safety requirements are integrated into the system design and development from its starting phase to the final phase. Galileo's integrity performance is provided in the Integrity Support Message (ISM) format, as Galileo utilizes a Dual Frequency Multi Constellation (DFMC) Satellite Based Augmentation System (SBAS) and Advanced Receiver Autonomous Integrity Monitoring (ARAIM) to serve safety critical applications. The integrity performance of Galileo is ensured by using a methodology similar to GPS Block II (i.e. continuous performance monitoring and maintenance on the system). The integrity assurance procedures reviewed in this paper can be utilized for a new satellite navigation system that will be developed in the near future.

Regional Integrity Analysis using modernized GPS, Galileo and SBAS

  • Han, Sang-Sul;Shin, Dae-Sik;Cho, Jong-Chul;Park, Chan-Sik;Jun, Hyang-Sik;Nam, Gi-Wook;Lee, Sang-Jeong
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 2006년도 International Symposium on GPS/GNSS Vol.1
    • /
    • pp.417-421
    • /
    • 2006
  • ICAO defines performance requirements of navigation system such as accuracy, integrity, continuity and availability. The integrity is most significant performance requirement in aviation where safety of life is crucial. Many researches on this topic anticipate that GPS with SBAS or Galileo can meet APV requirements and GPS with GBAS or Galileo with GBAS will meet CAT II and III requirements. These performance expectations are based on global analysis. In this paper regional integrity analysis in Korea using various combinations of modernized GPS, Galileo and SBAS is given. The simulation results show that CAT I requirement can be met using modernized GPS and Galileo alone, however, CAT II and III are not met even augmenting SBAS because of VPL. A more efficient augmentation such as GBAS which can reduce VPL dramatically is required to meet CAT II and III in Korean region.

  • PDF

Monitoring and Analysis of Galileo Services Performance using GalTeC

  • Su, H.;Ehret, W.;Blomenhofer, H.;Blomenhofer, E.
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 2006년도 International Symposium on GPS/GNSS Vol.1
    • /
    • pp.235-240
    • /
    • 2006
  • The paper will give an overview of the mission of GalTeC and then concentrate on two main aspects. The first more detailed aspect, is the analysis of the key performance parameters for the Galileo system services and presenting a technical overview of methods and algorithms used. The second more detailed aspect, is the service volume prediction including service dimensioning using the Prediction tool. In order to monitor and validate the Galileo SIS performance for Open Service (OS) and Safety Of Life services (SOL) regarding the key performance parameters, different analyses in the SIS domain and User domain are considered. In the SIS domain, the validation of Signal-in-Space Accuracy SISA and Signal-in-Space Monitoring Accuracy SISMA is performed. For this purpose first of all an independent OD&TS and Integrity determination and processing software is developed to generate the key reference performance parameters named as SISRE (Signal In Space Reference Errors) and related over-bounding statistical information SISRA (Signal In Space Reference Accuracy) based on raw measurements from independent sites (e.g. IGS), Galileo Ground Sensor Stations (GSS) or an own regional monitoring network. Secondly, the differences of orbits and satellite clock corrections between Galileo broadcast ephemeris and the precise reference ephemeris generated by GalTeC will also be compared to check the SIS accuracy. Thirdly, in the user domain, SIS based navigation solution PVT on reference sites using Galileo broadcast ephemeris and the precise ephemeris generated by GalTeC are also used to check key performance parameters. In order to demonstrate the GalTeC performance and the methods mentioned above, the paper presents an initial test result using GPS raw data and GPS broadcast ephemeris. In the tests, some Galileo typical performance parameters are used for GPS system. For example, the maximum URA for one day for one GPS satellite from GPS broadcast ephemeris is used as substitution of SISA to check GPS ephemeris accuracy. Using GalTeC OD&TS and GPS raw data from IGS reference sites, a 10 cm-level of precise orbit determination can be reached. Based on these precise GPS orbits from GalTeC, monitoring and validation of GPS performance can be achieved with a high confidence level. It can be concluded that one of the GalTeC missions is to provide the capability to assess Galileo and general GNSS performance and prediction methods based on a regional and global monitoring networks. Some capability, of which first results are shown in the paper, will be demonstrated further during the planned Galileo IOV phase, the Full Galileo constellation phase and for the different services particularly the Open Services and the Safety Of Life services based on the Galileo Integrity concept.

  • PDF

Galileo 수신기 신호추적 성능 분석 (Performance Analysis of Signal Tracking of Galileo Receiver)

  • 고종명;임성혁;지규인
    • 한국정보통신설비학회:학술대회논문집
    • /
    • 한국정보통신설비학회 2006년도 하계학술대회
    • /
    • pp.280-287
    • /
    • 2006
  • Advent of the new European satellite positioning system, Galileo will result in development of new satellite receivers such as, GPS/Galileo dual mode receiver. Furthermore, a new GNSS satellite receiver would be required to be self-reconfigured to certain navigational environments like, indoor, high interference, integrity, etc. In this paper, design and implementation issue of a FPGA based flexible GNSS receiver which gets navigation solution using L1 band signals of GPS and Galileo simultaneously is addressed.

  • PDF

한국지역에서 GNSS 무결성 감시의 가용성 예측 (GNSS integrity Performance analysis in Korean region)

  • 신대식;조종철;김용현;신미영;한상설;박찬식;전향식;남기욱;이상정
    • 한국항공우주학회지
    • /
    • 제35권12호
    • /
    • pp.1101-1107
    • /
    • 2007
  • 본 논문에서는 GPS, GPS 현대화, Galileo, SBAS 및 GBAS등의 항법 시스템을 모두 고려하여 한국 지역에서의 GNSS 무결성 감시의 가용성을 분석하였다. 현대화된 GPS, Galileo 및 SBAS를 사용하면 Cat. I에 근접한 성능을 얻을 수 있음을 시뮬레이션을 통해 확인 하였다. 그러나 여전히 수직오차의 영향으로 Cat. II 및 III를 만족시키지 못하므로 GBAS와 같은 보다 개선효과가 큰 보강 항법 시스템이 필요함을 확인하였다. 본 논문의 연구 결과는 보강시스템의 구축뿐 아니라 지역 위성항법시스템 구축을 위한 기초 자료로 활용될 수 있다.

The Technical Benefits of Future GNSS for Taiwan

  • Chiang, Kai-Wei;Yang, Ming;Tsai, Meng-Lun;Chang, Yao-Yun;Chu, Chi-Kuang
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 2006년도 International Symposium on GPS/GNSS Vol.2
    • /
    • pp.3-8
    • /
    • 2006
  • The next decade promises drastic improvements and additions to global navigation satellite systems (GNSS). Plans for GPS modernization include a civilian code measurement on the L2 frequency and a new L5 signal at 1176.45 MHz. Current speculations indicate that a fully operational constellation with these improvements could be available by 2013. Simultaneously, the Galileo Joint Undertaking is in the development and validation stages of introducing a parallel GNSS called Galileo. Galileo will also transmit freely available satellite navigation signals on three frequencies and is scheduled to be fully operational as early as 2008. In other words, a dual system receiver (e.g., GPS+GALILEO) for general users can access six civil frequencies transmitted by at least fifty eights navigation satellites in space. The advent of GALILEO and the modernization of GPS raise a lot of attention to the study of the compatibility and interoperability of the two systems. A number of performance analyses have been conducted in a global scale with respect to availability, reliability, accuracy and integrity in different simulated scenarios (such as open sky and urban canyons) for the two systems individually and when integrated. Therefore, the scope of this article aims at providing the technical benefits analysis for Taiwan specifically in terms of the performance indices mentioned above in a local scale, especially in typical urban canyon scenarios. The conclusions gained by this study will be applied by the Land Survey Bureau of Taiwanese as the guideline for developing future GNSS tracking facilities and dual GNSS processing module for precise surveying applications in static and kinematic modes.

  • PDF