• Title/Summary/Keyword: Galerkin' method

Search Result 830, Processing Time 0.029 seconds

Dynamic Response of a Beam Structure with Discrete Supports Subjected to a Moving Mass (이동질량에 의한 이산지지 보 구조물의 동적응답)

  • Oh, B.J.;Ryu, B.J.;Lee, G.S.;Lee, Y.S.
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.3
    • /
    • pp.264-270
    • /
    • 2011
  • This paper deals with dynamic response of a beam structure with discrete spring-damper supports under a moving mass. Governing equations of motion taking into account of all inertia effects of the moving mass were derived by Galerkin's mode summation method, and Runge-Kutta integration method was applied to solve the differential equations. The effects of the speed of the moving mass, spring stiffness, damping coefficient, span number of a beam structure, mass ratio of the moving mass on the dynamic response of the beam structure have been studied. Some numerical results provide design engineers for the beam structure design with discrete supports under a moving mass.

Dynamic stability analysis of laminated composite plates in thermal environments

  • Chen, Chun-Sheng;Tsai, Ting-Chiang;Chen, Wei-Ren;Wei, Ching-Long
    • Steel and Composite Structures
    • /
    • v.15 no.1
    • /
    • pp.57-79
    • /
    • 2013
  • This paper studies the dynamic instability of laminated composite plates under thermal and arbitrary in-plane periodic loads using first-order shear deformation plate theory. The governing partial differential equations of motion are established by a perturbation technique. Then, the Galerkin method is applied to reduce the partial differential equations to ordinary differential equations. Based on Bolotin's method, the system equations of Mathieu-type are formulated and used to determine dynamic instability regions of laminated plates in the thermal environment. The effects of temperature, layer number, modulus ratio and load parameters on the dynamic instability of laminated plates are investigated. The results reveal that static and dynamic load, layer number, modulus ratio and uniform temperature rise have a significant influence on the thermal dynamic behavior of laminated plates.

Preliminary design of cable-stayed bridges for vertical static loads

  • Michaltsos, G.T.;Ermopoulos, J.C.;Konstantakopoulos, T.G.
    • Structural Engineering and Mechanics
    • /
    • v.16 no.1
    • /
    • pp.1-15
    • /
    • 2003
  • This paper proposes a new method for the preliminary design of cable-stayed bridges that belong to the radial system subjected to static loads (self weight, traffic loads, concentrated loads, etc). The method is based on the determination of the each time existing relation between the tension forces of the cables and the corresponding bridge-deck deformations, and can be extended on any type of cable layout (fan, parallel, or mixed system). Galerkin's method is used for the final determination of the cable stresses and the bridge deformation. The determination of the equation, which gives the forces of the cables in relation to the deck's configurations, permits us to convert the problem to the solving of a continuous beam without cables.

Lateral buckling of thin-walled members with openings considering shear lag

  • Wang, Quanfeng
    • Structural Engineering and Mechanics
    • /
    • v.5 no.4
    • /
    • pp.369-383
    • /
    • 1997
  • The classical theory of thin-walled members is unable to reflect the shear lag phenomenon since it is based on the assumption of no shearing strains in the middle surface of the walls. In this paper, an energy equation for the lateral buckling of thin-walled members has been derived which includes the effects of torsion, warping and, especially, the shearing strains which reflect the shear lag phenomenon. A numerical analysis for the lateral buckling of thin-walled members with openings by using Galerkin's method of weighted residuals has been presented. The proposed numerical values and the predictions by experiment for the lateral buckling loads are to agree closely in the paper. The results from these comparisons show that the proposed method here is capable of predicting the lateral buckling of thin-walled members with openings. The fast convergence of the results indicates the numerical stability of the method. By the study, a very complex practical eigenvalue problem is transformed into a very simple one of solving only a linear equation with one variable.

Transient Analysis of Electromagnetic Scattering From Dielectric Objects Using Time-Domain Magnetic Field Integral Equation (시간영역 자장 적분방정식을 이용한 유전체의 전자파 산란 과도해석)

  • 서정훈;정백호;한상호;안현수
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.52 no.9
    • /
    • pp.412-417
    • /
    • 2003
  • In this Paper, we propose a time-domain magnetic field integral equation (TD-MFIE) formulation for analyzing the transient electromagnetic response from three-dimensional (3-D) dielectric bodies. The solution method in this paper is based on the Galerkin's method that involves separate spatial and temporal testing procedures. Triangular patch basis functions are used for spatial expansion and testing functions for arbitrarily shaped 3-D dielectric structures. The time-domain unknown coefficients of the equivalent electric and magnetic currents are approximated tv a set of orthonormal basis function that is derived from the Laguerre polynomials. These basis functions are also used for the temporal testing. Numerical results computed by the proposed method are presented and compared.

Dynamic Response of a Beam with a Spring Support Subject to a Moving Mass (탄성스프링 지지를 갖고 이동질량을 받는 보의 동적응답)

  • Lee, J.W.;Ryu, B.J.;Lee, G.S.;Song, O.S.;Lee, Y.L.
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.868-873
    • /
    • 2003
  • This paper deals with the linear dynamic response of an elastically restrained beam under a moving mass, where the elastic support was modelled by translational springs of variable stiffness. Governing equations of motion taking into account of all inertia effects of the moving mass were derived by Galerkin's mode summation method, and Runge-Kutta integration method was applied to solve the differential equations. The effects of the speed, the magnitude of the moving mass, stiffness and the position of the support springs on the response of the beam have been studied. A variety of numerical results allows us to draw important conclusions for structural design purposes.

  • PDF

Global stabilization of three-dimensional flexible marine risers by boundary control

  • Do, K.D.
    • Ocean Systems Engineering
    • /
    • v.1 no.2
    • /
    • pp.171-194
    • /
    • 2011
  • A method to design a boundary controller for global stabilization of three-dimensional nonlinear dynamics of flexible marine risers is presented in this paper. Equations of motion of the risers are first developed in a vector form. The boundary controller at the top end of the risers is then designed based on Lyapunov's direct method. Proof of existence and uniqueness of the solutions of the closed loop control system is carried out by using the Galerkin approximation method. It is shown that when there are no environmental disturbances, the proposed boundary controller is able to force the riser to be globally exponentially stable at its equilibrium position. When there are environmental disturbances, the riser is stabilized in the neighborhood of its equilibrium position by the proposed boundary controller.

Least square simulation and hierarchical optimal control of distributed parameter systems

  • Ahn, Doo-Soo;Lee, Myung-Kyu;OH, Min-Hwan;Bae, Jong-Il;Shim, Jae-Sun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1990.10b
    • /
    • pp.1066-1070
    • /
    • 1990
  • This paper presents a method for the optimal control of the distributed parameter systems (DPSs) by a hierarehical computational procedure. Approximate lumped parameter systems (LPSs) are derived by using the Galerkin method employing the Legendre polynomials as the basis functions. The DPSs however, are transformed into the large scale LPSs. And thus, the hierarchical control scheme is introduced to determine the optimal control inputs for the obtained LPSs. In addition, an approach to block pulse functions is applied to solve the optimal control problems of the obtained LPSs. The proposed method is simple and efficient in computation for the optimal control of DPSs.

  • PDF

Analysis of Infinite Periodic Frequency Selective Surface using Method of Moment (모멘트법을 이용한 주기적 배열을 갖는 무한 크기의 주파수선택 표면(FSS) 해석)

  • 강봉수;강부식;김흥수
    • Proceedings of the IEEK Conference
    • /
    • 2003.07a
    • /
    • pp.290-293
    • /
    • 2003
  • In this paper, infinite frequency selective surface comprised with rectangular plates which are arranged periodically is analyzed using Method of Moment based on Galerkin's method. In analysis, it is assumed that the plates are infinite thin perfect conductors. Based on this assumption, the reflection characteristics of the FSS is compared according to the polarization of plane-wave and the direction of incidence. In the results, the variation of reflection characteristics of the FSS highly depends on the direction of incidence when the polarization of the plane-wave is parallel to the plane of incidence, but the variation is nearly independent upon direction of incidence when the polarization of the plane-wave is perpendicular to the plane of incidence.

  • PDF

Combination resonances of imperfect SSFG cylindrical shells rested on viscoelastic foundations

  • Foroutan, Kamran;Ahmadi, Habib
    • Structural Engineering and Mechanics
    • /
    • v.75 no.1
    • /
    • pp.87-100
    • /
    • 2020
  • The present paper investigates the combination resonance behavior of imperfect spiral stiffened functionally graded (SSFG) cylindrical shells with internal and external functionally graded stiffeners under two-term large amplitude excitations. The structure is embedded within a generalized nonlinear viscoelastic foundation, which is composed of a two-parameter Winkler-Pasternak foundation augmented by a Kelvin-Voigt viscoelastic model with a nonlinear cubic stiffness, to account for the vibration hardening/softening phenomena and damping considerations. With regard to classical plate theory of shells, von-Kármán equation and Hook law, the relations of stress-strain are derived for shell and stiffeners. The spiral stiffeners of the cylindrical shell are modeled according to the smeared stiffener technique. According to the Galerkin method, the discretized motion equation is obtained. The combination resonance is obtained by using the multiple scales method. Finally, the influences of the stiffeners angles, foundation type, the nonlinear elastic foundation coefficients, material distribution, and excitation amplitude on the system resonances are investigated comprehensively.