• Title/Summary/Keyword: Galerkin' method

Search Result 830, Processing Time 0.024 seconds

Eigenvalue Analysis of a Membrane Using the Multiscale Adaptive Wavelet-Galerkin Method (멀티스케일 적응 웨이블렛-갤러킨 기법을 이용한 박막 고유치 문제 해석)

  • Yi, Yong-Sub;Kim, Yoon-Young
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.3
    • /
    • pp.251-258
    • /
    • 2004
  • Since the multiscale wavelet-based numerical methods allow effective adaptive analysis, they have become new analysis tools. However, the main applications of these methods have been mainly on elliptic problems, they are rarely used for eigenvalue analysis. The objective of this paper is to develop a new multiscale wavelet-based adaptive Galerkin method for eigenvalue analysis. To this end, we employ the hat interpolation wavelets as the basis functions of the finite-dimensional trial function space and formulate a multiresolution analysis approach using the multiscale wavelet-Galerkin method. It is then shown that this multiresolution formulation makes iterative eigensolvers very efficient. The intrinsic difference-checking nature of wavelets is shown to play a critical role in the adaptive analysis. The effectiveness of the present approach will be examined in terms of the total numbers of required nodes and CPU times.

Dynamic Analysis of a Deploying Beam with Geometric Non-Linearity and Translating Acceleration (기하학적 비선형과 이송 가속도를 갖는 전개하는 보의 동적해석)

  • Song, Deok-Ki;Chung, Jin-Tai
    • Proceedings of the KSME Conference
    • /
    • 2001.06b
    • /
    • pp.658-663
    • /
    • 2001
  • The dynamic response of an axially deploying beam is studied when the beam has geometric non-linearity and translating acceleration. Based upon the von Karman strain theory, the governing equations and the boundary conditions of a deploying beam are derived by using extended Hamilton's principle considering the longitudinal and transverse deflections. The equations of motion are discretized by using the Galerkin approximate method. From the discretized equations, the dynamic responses are computed by the Newmark time integration method.

  • PDF

ERROR ESTIMATES FOR A SEMI-DISCRETE MIXED DISCONTINUOUS GALERKIN METHOD WITH AN INTERIOR PENALTY FOR PARABOLIC PROBLEMS

  • Ohm, Mi Ray;Lee, Hyun Young;Shin, Jun Yong
    • East Asian mathematical journal
    • /
    • v.32 no.1
    • /
    • pp.101-115
    • /
    • 2016
  • In this paper, we consider a semi-discrete mixed discontinuous Galerkin method with an interior penalty to approximate the solution of parabolic problems. We define an auxiliary projection to analyze the error estimate and obtain optimal error estimates in $L^{\infty}(L^2)$ for the primary variable u, optimal error estimates in $L^2(L^2)$ for ut, and suboptimal error estimates in $L^{\infty}(L^2)$ for the flux variable ${\sigma}$.

REVIEW AND IMPLEMENTATION OF STAGGERED DG METHODS ON POLYGONAL MESHES

  • KIM, DOHYUN;ZHAO, LINA;PARK, EUN-JAE
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.25 no.3
    • /
    • pp.66-81
    • /
    • 2021
  • In this paper, we review the lowest order staggered discontinuous Galerkin methods on polygonal meshes in 2D. The proposed method offers many desirable features including easy implementation, geometrical flexibility, robustness with respect to mesh distortion and low degrees of freedom. Discrete function spaces for locally H1 and H(div) spaces are considered. We introduce special properties of a sub-mesh from a given star-shaped polygonal mesh which can be utilized in the construction of discrete spaces and implementation of the staggered discontinuous Galerkin method. For demonstration purposes, we consider the lowest case for the Poisson equation. We emphasize its efficient computational implementation using only geometrical properties of the underlying mesh.

NUMERICAL COUPLING OF TWO SCALAR CONSERVATION LAWS BY A RKDG METHOD

  • OKHOVATI, NASRIN;IZADI, MOHAMMAD
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.23 no.3
    • /
    • pp.211-236
    • /
    • 2019
  • This paper is devoted to the study and investigation of the Runge-Kutta discontinuous Galerkin method for a system of differential equations consisting of two hyperbolic conservation laws. The numerical coupling flux which is used at a given interface (x = 0) is the upwind flux. Moreover, in the linear case, we derive optimal convergence rates in the $L_2$-norm, showing an error estimate of order ${\mathcal{O}}(h^{k+1})$ in domains where the exact solution is smooth; here h is the mesh width and k is the degree of the (orthogonal Legendre) polynomial functions spanning the finite element subspace. The underlying temporal discretization scheme in time is the third-order total variation diminishing Runge-Kutta scheme. We justify the advantages of the Runge-Kutta discontinuous Galerkin method in a series of numerical examples.

A REDUCED-ORDER MODELLING FOR ROSENAU-RLW EQUATION WITH B-SPLINE GALERKIN FINITE ELEMENT METHOD

  • Jia, Li-Jiao;Piao, Guang-Ri
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.32 no.3
    • /
    • pp.261-280
    • /
    • 2019
  • We apply a reduced-order method based on B-spline Galerkin finite elements formulation to Rosenau-RLW equation for the first time and explain their process in detail. The ensemble of snapshots is very large generally, and it is difficult to apply POD to the ensemble of snapshots directly. Hence, we try to pick up important snapshots among the whole data. In this paper, we represent three different reduced-order schemes. First, the classical POD technique is examined. Second, (equally sampled snapshots) are exploited for POD technique. Finally, afterward sampling snapshots by CVT, for those snapshots, POD technique is implemented again.

HYBRIDIZABLE DISCONTINUOUS GALERKIN METHOD FOR ELLIPTIC EQUATIONS WITH NONLINEAR COEFFICIENTS

  • MINAM, MOON
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.26 no.4
    • /
    • pp.244-262
    • /
    • 2022
  • In this paper, we analyze the hybridizable discontinuous Galerkin (HDG) method for second-order elliptic equations with nonlinear coefficients, which are used in many fields. We present the HDG method that uses a mixed formulation based on numerical trace and flux. Under assumptions on the nonlinear coefficient and H2-regularity for a dual problem, we prove that the discrete systems are well-posed and the numerical solutions have the optimal order of convergence as a mesh parameter. Also, we provide a matrix formulation that can be calculated using an iterative technique for numerical experiments. Finally, we present representative numerical examples in 2D to verify the validity of the proof of Theorem 3.10.

OPTIMIZATION FOR THE BUBBLE STABILIZED LEGENDRE GALERKIN METHODS BY STEEPEST DESCENT METHOD

  • Kim, Seung Soo;Lee, Yong Hun;Oh, Eun Jung
    • Honam Mathematical Journal
    • /
    • v.36 no.4
    • /
    • pp.755-766
    • /
    • 2014
  • In the discrete formulation of the bubble stabilized Legendre Galerkin methods, the system of equations includes the artificial viscosity term as the parameter. We investigate the estimation of this parameter to get the optimal solution which minimizes the maximum error. Some numerical results are reported.

A DISCONTINUOUS GALERKIN METHOD FOR THE CAHN-HILLIARD EQUATION

  • CHOO S. M.;LEE Y. J.
    • Journal of applied mathematics & informatics
    • /
    • v.18 no.1_2
    • /
    • pp.113-126
    • /
    • 2005
  • The Cahn-Hilliard equation is modeled to describe the dynamics of phase separation in glass and polymer systems. A priori error estimates for the Cahn-Hilliard equation have been studied by the authors. In order to control accuracy of approximate solutions, a posteriori error estimation of the Cahn-Hilliard equation is obtained by discontinuous Galerkin method.