• 제목/요약/키워드: Galaxies: models

검색결과 156건 처리시간 0.026초

The first detection of intracluster light beyond a redshift of 1

  • Ko, Jongwan;Jee, Myungkook J.
    • 천문학회보
    • /
    • 제44권1호
    • /
    • pp.39.1-39.1
    • /
    • 2019
  • Not all stars in the Universe are gravitationally bounded to galaxies. Since first discovered in 1951, observations have revealed that a significant fraction of stars fills the space between galaxies in local (low-redshift) galaxy clusters, observed as diffuse intracluster light (ICL). Theoretical models provide mechanisms for the production of intracluster stars as tidally stripped material or debris generated through numerous galaxy interactions during the hierarchical growth of the galaxy cluster. These mechanisms predict that most intracluster stars in local galaxy clusters are long-accumulated material since z~1. However, there is no observational evidence to verify this prediction. Here we report observations of abundant ICL for a massive (above $10^{14}$ solar masses) galaxy cluster at a redshift of z=1.24, when the Universe was 5 billion years old. We found that more than 10 per cent of the total light of the cluster is contributed by the diffuse ICL out to 110 kpc from the center of the cluster, comparable to 5-20 per cent in local, massive galaxy cluster. Furthermore, we found that the colour of the brightest cluster galaxy located in the core of the cluster is consistent with that of the ICL out to 200 kpc. Our results demonstrate that the majority of the intracluster stars present in the local Universe, contrary to most previous theoretical and observational studies, were built up during a short period and early (z>1) in the history of the Virgo-like massive galaxy cluster formation, and might be concurrent with the formation of the brightest cluster galaxy.

  • PDF

Gamma-Ray and Neutrino Emissions from Starburst Galaxies

  • Ha, Ji-Hoon;Ryu, Dongsu;Kang, Hyesung
    • 천문학회보
    • /
    • 제45권1호
    • /
    • pp.37.1-37.1
    • /
    • 2020
  • Cosmic-ray protons (CRp) are efficiently produced at starburst galaxies (SBGs), where the star formation rate (SFR) rate is high. In this talk, we present estimates of gamma-ray and neutrino emissions from nearby SBGs, M82, NGC253, and Arp220. Inside the starburst nucleus (SBN), CRp are accelerated at supernova remnant (SNR) shocks as well as at stellar wind (SW) termination shocks, and their transport is governed by the advection due to starburst-driven wind and diffusion mediated by turbulence. We here model the momentum distributions of SNR and SW-produced CRp with single or a double power-law forms. We also employ two different diffusion models, where CRp are resonantly scattered off large-scale turbulence in SBN or self-excited waves driven by CR streaming instability. We then calculate gamma-ray/neutrino fluxes. The observed gamma-ray fluxes by Fermi-LAT, Veritas, and H.E.S.S are well reproduced with double power-law distribution for SNR-produced CRp and the CRp diffusion by self-excited turbulence. The estimated neutrino fluxes are <~10-3 of the atmospheric neutrino flux in the energy range of Eneutrino <~100 GeV and <~10-1 of the IceCube point source sensitivity in the energy range of Eneutrino >~60 TeV.

  • PDF

Cosmology with peculiar velocity surveys

  • Qin, Fei
    • 천문학회보
    • /
    • 제46권2호
    • /
    • pp.43.5-44
    • /
    • 2021
  • In the local Universe, the gravitational effects of mass density fluctuations exert perturbations on galaxies' redshifts on top of Hubble's Law, called 'peculiar velocities'. These peculiar velocities provide an excellent way to test the cosmological model in the nearby Universe. In this talk, we present new cosmological constraints using peculiar velocities measured with the 2MASS Tully-Fisher survey (2MTF), 6dFGS peculiar-velocity survey (6dFGSv), the Cosmicflows-3 and Cosmicflows-4TF compilation. Firstly, the dipole and the quadrupole of the peculiar velocity field, commonly named 'bulk flow' and 'shear' respectively, enable us to test whether our cosmological model accurately describes the motion of galaxies in the nearby Universe. We develop and use a new estimators that accurately preserves the error distribution of the measurements to measure these moments. In all cases, our results are consistent with the predictions of the Λ cold dark matter model. Additionally, measurements of the growth rate of structure, fσ8 in the low-redshift Universe allow us to test different gravitational models. We developed a new estimator of the "momentum" (density weighted peculiar velocity) power spectrum and use joint measurements of the galaxy density and momentum power spectra to place new constraints on the growth rate of structure from the combined 2MTF and 6dFGSv data. We recover a constraint of fσ8=0.404+0.082-0.081 at an effective redshift zeff=0.03. This measurement is also fully consistent with the expectations of General Relativity and the Λ Cold Dark Matter cosmological model.

  • PDF

Relative merits of different types of multi-wavelength observations to constrain galaxy physical parameter

  • Pacifici, Camilla
    • 천문학회보
    • /
    • 제38권2호
    • /
    • pp.35.2-35.2
    • /
    • 2013
  • I will present a new approach to constrain galaxy physical parameters from the combined interpretation of stellar and nebular emission in wide ranges of observations. This approach relies on a comprehensive library of synthetic spectra, assembled using state-of-the-art models of star formation and chemical enrichment histories, stellar population synthesis, nebular emission and attenuation by dust. We focus on the constraints set by 5-band photometry and low- and medium-resolution spectroscopy at optical rest wavelengths on a few physical parameters characterizing the stars and interstellar medium. Since these parameters cannot be known a priori for any galaxy sample, we assess the accuracy to which they can be retrieved by simulating 'pseudo-observations' using models with known parameters. We find that the combined analysis of stellar and nebular emission in low-resolution (50A FWHM) galaxy spectra provides valuable constraints on all physical parameters. The approach can be extended to the analysis of any type of observation and during this talk i will present some applications to observed galaxies up to redshift 1.5.

  • PDF

STRUCTURE OF THE SPIRAL GALAXY NGC 300 -1. The generalzation of Toomre's mass model-

  • Rhee, Myung-Hyun;Chun, Mun-Suk
    • Journal of Astronomy and Space Sciences
    • /
    • 제9권1호
    • /
    • pp.11-29
    • /
    • 1992
  • In 1963, Toomre built up classes of mass models for the highly flattened galaxies which have free parameters n, $a_n$ and $C_n$. In order to keep the universal dimension, we adopt parameters $b_n({C_n}^2={a_n}^{2n}+^2{b_n}^2/(n-1)!)$ insteal of $C_n$. Series of the normalized Toomre's mass models (G = $V_{max}$ =$R_{max}$ = 1, n = 1 to 7) are derived and the normalized parameters $a_n$ and $b_n$ are determined by the iteration method. Replacing parameters $a_n$ and $b_n$ to ${a_n}^l(=a_nr_{max})$ and ${b_n}^l(=b_n\cdotV_{max}/r_{max})$, we can get the generalization of Toomre's mass model.

  • PDF

A comparison study of approximate and Monte Carlo radiative transfer methods for late type galaxy models

  • Lee, Dukhang;Baes, Maarten;Seon, Kwang-il
    • 천문학회보
    • /
    • 제41권1호
    • /
    • pp.49.3-50
    • /
    • 2016
  • Two major radiative transfer (RT) techniques have been developted to model late-type galaxies: approximate RT and Monte Carlo (MC) RT. In the approximate RT, first proposed by Kylafis & Bahcall, only two terms of unscattered (direct) and single-scattered intensities are computed and higher-order multiple scattering components are approximated, saving computing time and cost compared to MC RT. However, the approximate RT can yield errors in regions where multiple scattering effect is significant. In order to examine how significant the errors of the approximate RT are, we compare results of the approximate RT with those of SKIRT, a state-of-the-art MC RT code, which is basically free from the approximation errors by fully incorporating all the multiple scattered intensities. In this study, we present quantitative errors in the approximate RT for late type galaxy models with various optical depths and inclination angles. We report that the approximate RT is not reliable if the central face-on optical depth is intermediate or high (${\tau}_V$ > 3).

  • PDF

How does the gas in a disk galaxy affect the evolution of a stellar bar?

  • Seo, Woo-Young;Kim, Woong-Tae
    • 천문학회보
    • /
    • 제42권2호
    • /
    • pp.44.1-44.1
    • /
    • 2017
  • In barred galaxies, gaseous structures such a nuclear ring and dust lanes are formed by a non-axisymmetric stellar bar potential, and the evolution of the stellar bar is influenced by mass inflows to the center and central star formation. To study how the presence of the gas affects the evolution of the stellar bar, we use the mesh-free hydrodynamics code GIZMO and run fully self-consistent three-dimensional simulations. To explore the evolution with differing initial conditions, we vary the fraction of the gas and stability of initial disks. In cases when the initial disk is stable with Q=1.2, the bar strength in the model with 5% gas is weaker than that in the gas-free model, while the bar with 10% gas does not form a bar. This suggests that the gaseous component is unfavorable to the bar formation dynamically. On the other hand, in models with relatively unstable disk with Q=1.0, the presence of gas helps form a bar: the bar forms more rapidly and strongly as the gas fraction increases. This is because the unable disks form stars vigorously, which in turn cools down the stellar disk by adding newly-created stars with low velocity dispersion. However, the central mass concentration also quickly increases as the bar grows in these unstable models, resulting in fast bar dissolution in gas rich models. We will discuss our results in comparison with previous work.

  • PDF

우리은하 중온 이온화 매질의 광이온화 모델 (PHOTOIONIZATION MODELS OF THE WARM IONIZED MEDIUM IN THE GALAXY)

  • 선광일
    • 천문학논총
    • /
    • 제22권4호
    • /
    • pp.89-95
    • /
    • 2007
  • The warm ionized medium (WIM) outside classical H II regions is a fundamental gas-phase constituent of the Milky Way and other late-type spiral galaxies, and is traced by faint emission lines at optical wavelengths. We calculate the photoionization models of the WIM in the Galaxy by a stellar UV radiation with the effective temperature 35,000 K assuming not only spherical geometry but also plane parallel geometry, and compare the results with the observed emission line ratios. We also show the dependence of the emission line ratios on various gas-phase abundances. The emergent emission-line ratios are in agreement with the average-values of observed ratios of [S II] ${\lambda}6716/H{\alpha}$, [N II] ${\lambda}6583/H{\alpha}$, [O I] ${\lambda}6300/H{\alpha}$, [O III] ${\lambda}5007/H{\alpha}$, He I ${\lambda}5876/H{\alpha}$. However, their extreme values could not be explained with the photoionization models. It is also shown that the addition of all stellar radiation from the OB stars in the Hipparcos stellar catalog resembles that of an O7-O8 type star.

Metallicity-dependent mixing length in evolution models of red supergiant stars in IC 1613

  • Chun, Sang-Hyun;Yoon, Sung-Chul;Oh, Heeyoung
    • 천문학회보
    • /
    • 제46권2호
    • /
    • pp.50.2-50.2
    • /
    • 2021
  • There is increasing evidence that the convective mixing length (α) in stellar evolution models depends on metallicity of stars. In order to confirm a more precise metallicity-dependent mixing length trend, we investigate the effective temperature and metallicity of 14 red supergiant stars (RSGs) in the irregular dwarf galaxy IC 1613 using the near-infrared spectra observed with the MMIRS on the MMT telescope. From the synthetic spectral fitting to the observed spectra, we find that the mean metallicity is about [Fe/H]=0.69 with a weak bimodal distribution. We also find that the effective temperature of RSGs in IC 1613 is higher by about 250 K than that of the SMC on average. We compare the RSG position with stellar evolutionary tracks on the HR diagram, finding that models with α = 2.2-2.4 H_p can best reproduce the effective temperatures of the RSGs in IC 1613. It is evident that the mixing length values for IC 1613 is lower than that of the Milky Way. This result supports our previous study on a metallicity-dependent mixing length: mixing length decreases with decreasing metallicity of host galaxies. However, this dependency becomes relatively weak for RSGs having a metallicity equal to or less than the SMC metallicity.

  • PDF

Investigating the Non-linearity Effect on the Color-to-Metallicity Conversion of Globular Clusters

  • Kim, Hak-Sub;Yoon, Suk-Jin
    • 천문학회보
    • /
    • 제39권2호
    • /
    • pp.62.1-62.1
    • /
    • 2014
  • Metallicity distribution of globular clusters (GCs) provides an important clue for star formation history of their host galaxy. With an assumption that GCs are generally old, GC colors have been used as a proxy of GC metallicities. Bimodal GC color distributions observed in most large galaxies have, for decades, been interpreted as bimodal metallicity distributions, indicating the presence of two populations within a galaxy. However, the conventional view has been challenged by a new theory that non-linear GC color-metallicity relations (CMRs) can cause a bimodal color distribution even from a single-peaked metallicity distribution. Using the photometric and spectroscopic data of NGC 5128 GCs in combination with stellar population simulation models, we examine the effect of non-linearity in GC CMRs on the transformation of GC color distributions into metallicity distributions. Although, in some colors, offsets are present between observations and models in the CMRs, their overall shape agrees well for various colors. After the offsets are corrected, the observed spectroscopic metallicity distribution is well reproduced via modeled CMRs from various color distributions having different morphologies. On the other hand, the linearly converted metallicity distributions from GC colors show a significant discrepancy with the observed spectroscopic metallicity distribution. We discuss the implications of our results.

  • PDF