• 제목/요약/키워드: Galactic Structure

검색결과 108건 처리시간 0.026초

TRIGONOMETRIC DISTANCE AND PROPER MOTION OF IRAS 20056+3350: A MASSIVE STAR FORMING REGION ON THE SOLAR CIRCLE

  • BURNS, ROSS A.;NAGAYAMA, TAKUMI;HANDA, TOSHIHIRO;OMODAKA, TOSHIHIRO;NAKAGAWA, AKIHARU;NAKANISHI, HIROYUKI;HAYASHI, MASAHIKO;SHIZUGAM, MAKOTO
    • 천문학논총
    • /
    • 제30권2호
    • /
    • pp.121-123
    • /
    • 2015
  • We report our measurements of the trigonometric distance and proper motion of IRAS 20056+3350, obtained from the annual parallax of $H_2O$ masers. Our distance of $D=4.69^{+0.65}_{-0.51}kpc$, which is 2.8 times larger than the near kinematic distance adopted in the literature, places IRAS 20056+3350 at the leading tip of the Local arm and proximal to the Solar circle. We estimated the proper motion of IRAS 20056+3350 to be (${\mu}_{\alpha}cos{\delta}$, ${\mu}_{\delta}$) = ($-2.62{\pm}0.33$, $-5.65{\pm}0.52$) $mas\;yr^{-1}$ from the group motion of $H_2O$ masers, and use our results to estimate the angular velocity of Galactic rotation at the Galactocentric distance of the Sun, ${\Omega}_0=29.75{\pm}2.29km\;s^{-1}kpc^{-1}$, which is consistent with the values obtained for other tangent points and Solar circle objects.

Diagnostics of Diffuse Two-Phase Matter Using Techniques of Positron Annihilation Spectroscopy in Gamma-Ray and Optical Spectra

  • Doikov, Dmytry;Yushchenko, Alexander;Jeong, Yeuncheol
    • Journal of Astronomy and Space Sciences
    • /
    • 제36권3호
    • /
    • pp.115-119
    • /
    • 2019
  • This paper is a part of the series on positron annihilation spectroscopy of two-phase diffuse gas-and-dust aggregates, such as interstellar medium and the young remnants of type II supernovae. The results obtained from prior studies were applied here to detect the relationship between the processes of the annihilation of the K-shell electrons and incident positrons, and the effects of these processes on the optical spectra of their respective atoms. Particular attention was paid to the Doppler broadening of their optical lines. The relationship between the atomic mass of the elements and the Doppler broadening, ${\Delta}{\lambda}_D$ (${\AA}$), of their emission lines as produced in these processes was established. This relationship is also illustrated for isotope sets of light elements, namely $^3_2He$, $^6_3Li$, $^7_3Be$, $^{10}_5B$ and $^{11}_5B$. A direct correlation between the ${\gamma}-line$ luminosity ( $E_{\gamma}=1.022MeV$) and ${\Delta}{\lambda}_D$ (${\AA}$) was proved virtually. Qualitative estimates of the structure of such lines depending on the positron velocity distribution function, f(E), were made. The results are presented in tabular form and can be used to set up the objectives of further studies on active galactic nuclei and young remnants of type II supernovae.

The development of field galaxies in the first half of the cosmic history

  • Park, Minjung;Yi, Sukyoung K.
    • 천문학회보
    • /
    • 제43권2호
    • /
    • pp.35.3-36
    • /
    • 2018
  • One of the most prevalent knowledge about disk galaxies, which dominate the population of the local Universe, is that they consist of stellar structures with different kinematics, such as thin disk, bulge, and halo. Therefore, investigating when and how these components develop in a galaxy is the key to understanding the evolution of galaxies. Using the NewHorizon simulation, we can resolve the detailed structures of galaxies, in the field environment, from the early Universe where star formation and mergers were most active. We first decompose stellar particles in a galaxy into a disk and a dispersion-dominated, spheroidal, component based on their orbits and then see how these components evolve in terms of mass and structure. At high redshift z~3, galaxies are mostly dispersion-dominated as stars are formed misaligned with the galactic rotational axis. At z=1~2, massive galaxies start to dominantly form disk stars, while less massive galaxies do much later. Furthermore, massive galaxies are forming thinner and larger disks with time, and the preexistent disks are heated or even disrupted to become a part of dispersion-dominated component. Thus, the mass growth of spheroidal components at later epochs is dominated by disrupted stars with disk origins and accreted stars at large radii.

  • PDF

Mapping the real-space distributions of galaxies in SDSS DR7

  • Shi, Feng
    • 천문학회보
    • /
    • 제44권1호
    • /
    • pp.78.1-78.1
    • /
    • 2019
  • Using a method to correct redshift space distortion (RSD) for individual galaxies, we mapped the real space distributions of galaxies in the Sloan Digital Sky Survey (SDSS) Data Release 7(DR7). We use an ensemble of mock catalogs to demonstrate the reliability of this extension, showing that it allows for an accurate recovery of the real-space correlation functions and galaxy biases. We also demonstrate that, using an iterative method applied to intermediate scale clustering data, we can obtain an unbiased estimate of the growth rate of structure $f\sigma_8$, which is related to the clustering amplitude of matter, to an accuracy of $\sim 10\%$. Applying this method to the Sloan Digital Sky Survey (SDSS) Data Release 7 (DR7), we construct a real-space galaxy catalog spanning the redshift range $0.01 \leq z \leq 0.2$, which contains 584,473 galaxies in the North Galactic Cap (NGC). Using this data we, infer $0.376 \pm 0.038$ at a median redshift z=0.1, which is consistent with the WMAP9 cosmology at $1\sigma$ level. By combining this measurement with the real-space clustering of galaxies and with galaxy-galaxy weak lensing measurements for the same sets of galaxies, we are able to break the degeneracy between $f$, $\sigma_8$ and $b$. From the SDSS DR7 data alone, we obtain the following cosmological constraints at redshift $z=0.1$ for galaxies.

  • PDF

Radiative pressure feedback in obscured quasars

  • Jun, Hyunsung;Assef, Roberto;Ricci, Claudio;Stern, Daniel
    • 천문학회보
    • /
    • 제44권2호
    • /
    • pp.36.4-36.4
    • /
    • 2019
  • Ricci et al. (2017, Nature, 549, 488) discovered a lack of high accretion rate, obscured Active Galactic Nuclei (AGN) in the hard X-ray selected Swift/BAT local AGN survey. This was interpreted as radiative pressure driven AGN feedback clearing its immediate vicinity composed of dusty gas (having an effectively low Eddington limit in the order of 0.01-0.1), and governing the level of nuclear obscuration. As we find Eddington-limited accretion and high extinction values among obscured, luminous AGN (quasars) however, it may be that the local X-ray AGN and the distant quasars undergo different feedback mechanisms in clearing their surroundings. In this study, we simply compare the obscuring column density and Eddington ratio values for quasars selected by various methods, including X-ray obscured, optically blue, infrared red/luminous, and submillimeter bright AGN. We find obscured quasars lying on the column density-Eddington ratio diagram previously unoccupied by Ricci et al., suggesting that radiative pressure is insufficient to clear its dusty structure at high luminosity, or that the dust in obscured quasars are more extended than the low luminosity counterparts to become fully transparent. We discuss alternative feedback scenarios that may be more relevant for obscured quasars.

  • PDF

THE INITIAL CONDITIONS AND EVOLUTION OF ISOLATED GALAXY MODELS: EFFECTS OF THE HOT GAS HALO

  • Hwang, Jeong-Sun;Park, Changbom;Choi, Jun-Hwan
    • 천문학회지
    • /
    • 제46권1호
    • /
    • pp.1-32
    • /
    • 2013
  • We construct several Milky Way-like galaxy models containing a gas halo (as well as gaseous and stellar disks, a dark matter halo, and a stellar bulge) following either an isothermal or an NFW density profile with varying mass and initial spin. In addition, galactic winds associated with star formation are tested in some of the simulations. We evolve these isolated galaxy models using the GADGET-3 N-body/hydrodynamic simulation code, paying particular attention to the effects of the gaseous halo on the evolution. We find that the evolution of the models is strongly affected by the adopted gas halo component, particularly in the gas dissipation and the star formation activity in the disk. The model without a gas halo shows an increasing star formation rate (SFR) at the beginning of the simulation for some hundreds of millions of years and then a continuously decreasing rate to the end of the run at 3 Gyr. Whereas the SFRs in the models with a gas halo, depending on the density profile and the total mass of the gas halo, emerge to be either relatively flat throughout the simulations or increasing until the middle of the run (over a gigayear) and then decreasing to the end. The models with the more centrally concentrated NFW gas halo show overall higher SFRs than those with the isothermal gas halo of the equal mass. The gas accretion from the halo onto the disk also occurs more in the models with the NFW gas halo, however, this is shown to take place mostly in the inner part of the disk and not to contribute significantly to the star formation unless the gas halo has very high density at the central part. The rotation of a gas halo is found to make SFR lower in the model. The SFRs in the runs including galactic winds are found to be lower than those in the same runs but without winds. We conclude that the effects of a hot gaseous halo on the evolution of galaxies are generally too significant to be simply ignored. We also expect that more hydrodynamical processes in galaxies could be understood through numerical simulations employing both gas disk and gas halo components.

FORMATION AND EVOLUTION OF SELF-INTERACTING DARK MATTER HALOS

  • AHN KYUNGJIN;SHAPIRO PAUL R.
    • 천문학회지
    • /
    • 제36권3호
    • /
    • pp.89-95
    • /
    • 2003
  • Observations of dark matter dominated dwarf and low surface brightness disk galaxies favor density profiles with a flat-density core, while cold dark matter (CDM) N-body simulations form halos with central cusps, instead. This apparent discrepancy has motivated a re-examination of the microscopic nature of the dark matter in order to explain the observed halo profiles, including the suggestion that CDM has a non-gravitational self-interaction. We study the formation and evolution of self-interacting dark matter (SIDM) halos. We find analytical, fully cosmological similarity solutions for their dynamics, which take proper account of the collisional interaction of SIDM particles, based on a fluid approximation derived from the Boltzmann equation. The SIDM particles scatter each other elastically, which results in an effective thermal conductivity that heats the halo core and flattens its density profile. These similarity solutions are relevant to galactic and cluster halo formation in the CDM model. We assume that the local density maximum which serves as the progenitor of the halo has an initial mass profile ${\delta}M / M {\propto} M^{-{\epsilon}$, as in the familiar secondary infall model. If $\epsilon$ = 1/6, SIDM halos will evolve self-similarly, with a cold, supersonic infall which is terminated by a strong accretion shock. Different solutions arise for different values of the dimensionless collisionality parameter, $Q {\equiv}{\sigma}p_br_s$, where $\sigma$ is the SIDM particle scattering cross section per unit mass, $p_b$ is the cosmic mean density, and $r_s$ is the shock radius. For all these solutions, a flat-density, isothermal core is present which grows in size as a fixed fraction of $r_s$. We find two different regimes for these solutions: 1) for $Q < Q_{th}({\simeq} 7.35{\times} 10^{-4}$), the core density decreases and core size increases as Q increases; 2) for $Q > Q_{th}$, the core density increases and core size decreases as Q increases. Our similarity solutions are in good agreement with previous results of N-body simulation of SIDM halos, which correspond to the low-Q regime, for which SIDM halo profiles match the observed galactic rotation curves if $Q {\~} [8.4 {\times}10^{-4} - 4.9 {\times} 10^{-2}]Q_{th}$, or ${\sigma}{\~} [0.56 - 5.6] cm^2g{-1}$. These similarity solutions also show that, as $Q {\to}{\infty}$, the central density acquires a singular profile, in agreement with some earlier simulation results which approximated the effects of SIDM collisionality by considering an ordinary fluid without conductivity, i.e. the limit of mean free path ${\lambda}_{mfp}{\to} 0$. The intermediate regime where $Q {\~} [18.6 - 231]Q_{th}$ or ${\sigma}{\~} [1.2{\times}10^4 - 2.7{\times}10^4] cm^2g{-1}$, for which we find flat-density cores comparable to those of the low-Q solutions preferred to make SIDM halos match halo observations, has not previously been identified. Further study of this regime is warranted.

THE 18 ㎛ LUMINOSITY FUNCTION OF GALAXIES WITH AKARI

  • Toba, Yoshiki;Oyabu, Shinki;Matsuhara, Hideo;Ishihara, Daisuke;Malkan, Matt;Wada, Takehiko;Ohyama, Youichi;Kataza, Hirokazu;Takita, Satoshi
    • 천문학논총
    • /
    • 제27권4호
    • /
    • pp.335-338
    • /
    • 2012
  • We present the $18{\mu}m$ luminosity function (LF) of galaxies at 0.006 < z < 0.8 (the average redshift is ~ 0.04) using the AKARI mid-infrared All-Sky Survey catalogue. We have selected 243 galaxies at $18{\mu}m$ from the Sloan Digital Sky Survey (SDSS) spectroscopic region. These galaxies then have been classified into five types; Seyfert 1 galaxies (Sy1, including quasars), Seyfert 2 galaxies (Sy2), low ionization narrow emission line galaxies (LINER), galaxies that are likely to contain both star formation and Active Galactic Nuclei (AGN) activities (composites), and star forming galaxies (SF) using optical emission lines such as the line width of $H{\alpha}$ or the emission line ratios of [OIII]/$H{\beta}$ and [NII]/$H{\alpha}$. As a result of constructing the LF of Sy1 and Sy2, we found the following results; (i) the number density ratio of Sy2 to Sy1 is $1.64{\pm}0.37$, larger than the results obtained from optical LF and (ii) the fraction of Sy2 in the entire AGN population may decrease with $18{\mu}m$ luminosity. These results suggest that most of the AGNs in the local universe are obscured by dust and the torus structure probably depends on the mid-infrared luminosity.

Water vapor in high-mass star-forming regions and PDRs: the Herschel/HIFI view

  • Choi, Yunhee;van der Tak, Floris F.S.;van Dishoeck, Ewine F.;Bergin, Edwin A.
    • 천문학회보
    • /
    • 제40권2호
    • /
    • pp.42.2-43
    • /
    • 2015
  • Massive stars play a major role in the interstellar energy budget and the shaping of the galactic environment. The water molecule is thought to be a sensitive tracer of physical conditions and dynamics in star-forming regions because of its large abundance variations between hot and cold regions. Herschel/HIFI allows us to observe the multiple rotational transitions of H2O including the ground-state levels, and its isotopologues toward high-mass star-forming regions in different evolutionary stages. Photodissociation regions (PDRs) are also targeted to investigate the distribution of water and its chemistry. We present line profiles and maps of H2O using data from two guaranteed-time key programs "Water In Star-forming regions with Herschel" and "Herschel observations of EXtra-Ordinary Sources". We analyze the temperature and density structures using LTE and non-LTE methods. We also estimate turbulent and expansion velocities, and abundance of water in the inner and outer envelopes using the 1D radiative transfer code. Around high-mass protostars we find H2O abundances of ~10-8-10-9 for the outer envelope and ~10-4-10-5 for the inner envelope, and expansion and turbulent velocities range from 1.0 km s-1 to 2.0 km s-1. The abundances and kinematic parameters of the sources do not show clear trends with evolutionary indicators. The Herschel/HIFI mapping observations of H2O toward the Orion Bar PDR show that H2O emission peaks between the shielded dense gas and the radicals position, in agreement with the theoretical and the observational PDR structure. The derived H2O abundance is ~10-7 and peaks at the depth of AV ~8 mag from the ionization front. Together with the low ortho-to-para ratio of H2O (~1) presented by Choi et al. (2014), our results show that the chemistry of water in the Orion Bar is dominated by photodesorption and photodissociation.

  • PDF

BOAO PHOTOMETRIC SURVEY OF GALACTIC OPEN CLUSTERS. III. CZERNIK 24 AND CZERNIK 27

  • Kim Sang-Chul;Park Hong-Soo;Sohn Sang-Mo Tony;Lee Myung-Gyoon;Park Byeong-Gon;Sung Hwan-Kyung;Ann Hong-Bae;Chun Moo-Young;Kim Seung-Lee;Jeon Young-Beom;Yuk In-Soo;Lee Sang- Hyun
    • 천문학회지
    • /
    • 제38권4호
    • /
    • pp.429-435
    • /
    • 2005
  • We present BV CCD photometry for the open clusters Czernik 24 and Czernik 27. These clusters have never been studied before, and we provide, for the first time, the cluster parameters; reddening, distance, metallicity and age. Czernik 24 is an old open cluster with age $1.8{\pm}0.2Gyr$, metallicity $[Fe/H]=-0.41{\pm}0.15dex$, distance modulus $(m-M)_0=13.1{\pm}0.3mag$ ($d=4.1{\pm}0.5kpc$), and reddening $E(B-V)=0.54{\pm}0.12mag$. The parameters for Czernik 27 are estimated to be $age=0.63{\pm}0.07Gyr$, $[Fe/H]=-0.02{\pm}0.10dex$, $(m-M)_0=13.8{\pm}0.2mag$ ($d=5.8{\pm}0.5kpc$), and $E(B-V)=0.15{\pm}0.05mag$. The metallicity and distance values for Czernik 24 are consistent with the relation between the metallicity and the Galactocentric distance of other old open clusters. We find the metallicity gradient of 51 old open clusters including Czernik 24 to be ${\Delta}[Fe/H]/{\Delta}R_{gc}=-0.064 {\pm}0.009dex\;kpc^{-1}$.