• 제목/요약/키워드: Gait-Phase

검색결과 312건 처리시간 0.03초

하지 근육의 피로상태 동안 높은 굽 신발에 적용한 전면접촉인솔이 젊은 여성의 보행 특성에 미치는 영향 (The Effect of High-Heeled Shoes With Total Contact Inserts in the Gait Characteristics of Young Female Adults During Lower Extremity Muscle Fatigue)

  • 고은혜;최흥식;김택훈;신헌석;권오윤;최규환
    • 한국전문물리치료학회지
    • /
    • 제15권1호
    • /
    • pp.38-45
    • /
    • 2008
  • This study investigated gait characteristics, kinematics, and kinetics in the lower extremities between two different shoe conditions (high heeled shoes (7 cm), and high heeled shoes with a total contact insert (TCI)) after lower extremity muscle fatigue. Although TCI shave been applied in high heeled shoes to increase comfort and to decrease foot pressure, no study has attempted to identify the effects of TCI in fatigue conditions. The purpose of this study was to determine the effects of walking in high heeled shoes with TCI after lower extremity muscle fatigue was induced. This study was carried out in a motion analysis laboratory at Hanseo University. A volunteer sample of 14 healthy female subjects participated. All in fatigue conditions, the subjects were divided into two groups. The muscle fatigue was induced by 40 voluntary dorsi- and plantar-flexion exercises and 40 heel-rise exercises of the dominant foot. Surface electromyography was used to confirm the localized muscle fatigue using power spectral analysis of three muscles (tibialis anterior, gastrocnemius medialis and lateralis). The results were as follows: (1) In muscle fatigue conditions, the use of TCI decreased the peak flexion angle of the hip joint significantly in the early stance phase (p<.05) and increased the peak hip flexion moment in the terminal stance phase (p<.05). (2) In muscle fatigue conditions, the application of TCI also increased peak hip power generation in the early stance phase and peak hip power absorption in the terminal stance phase (p<.05). (3) In muscle fatigue conditions, the use of TCI reduced the impact force significantly and increased the secondary peak vertical GRF. These findings suggest that the TCI may provide beneficial effects when muscle fatigue occurs for a high heeled shoe gait. Future research employing the patient population and various types of TCI materials are required to clarify the effects of TCI.

  • PDF

지능형 의족의 보행모드 자동변경을 위한 보행노면 판별 기법 (Method of Walking Surface Identification Technique for Automatic Change of Walking Mode of Intelligent Bionic Leg)

  • 유성봉;임영광;엄수홍;이응혁
    • 재활복지공학회논문지
    • /
    • 제11권1호
    • /
    • pp.81-89
    • /
    • 2017
  • 본 논문은 대퇴절단 환자의 다양한 환경에서의 보행을 가능하게 하는 지능형 의족의 보행노면 및 보행단계 판별 기법을 제안한다. 제안하는 보행모드 변경 기법은 스트레인게이지 센서 만으로 보행노면 및 보행단계 판별이 가능한 단일 센서 기반의 알고리즘으로 기존 지능형 의족의 다중센서 기반 알고리즘의 단순화와 의족 시스템의 저가화가 가능하게 고안하였다. 보행노면 판별 알고리즘을 위해 정상인의 보행 중 발생하는 지면반발력의 특징을 분석하여 보행단계 세분화와 보행노면 검출 조건을 정의하였고, 대퇴절단 환자와 유사한 환경에서의 보행 실험을 위해 보행분석 장치를 제작하였다. 정의된 검출 조건과 제작된 기구를 통해 논문의 효용성 검증을 진행하였으며, 정상인 대상의 실험결과 단일 센서 기반 알고리즘의 정확도는 약 95%를 나타냈다. 제안하는 단일 센서 기반의 알고리즘을 통해 지능형 의족 시스템의 저가화가 가능할 것으로 판단되며 사용자가 직접 보행노면 상태를 파악하고 보행모드를 전환하는 수동 보행모드 변경 방식에서 벗어나 의족이 현재 보행 노면 상태를 파악하고 상황에 맞는 보행모드를 전환하는 자동보행 모드 변경이 가능할 것으로 확인되었다.

The Effects of Dynamic Functional Electrical Stimulation With Treadmill Gait Training on Functional Ability, Balance Confidence and Gait in Chronic Stroke Patients

  • Cho, Young-Ki;Ahn, Jun-Su;Park, Yong-Wan;Do, Jung-Wha;Lee, Nam-Hyun;Kwon, Oh-Yun
    • 한국전문물리치료학회지
    • /
    • 제21권4호
    • /
    • pp.23-33
    • /
    • 2014
  • The aim of this study was to evaluate the effects of walking on a treadmill while using dynamic functional electrical stimulation (Dynamic FES) on functional ability and gait in chronic stroke patients. This was a prospective, randomized controlled study. Twelve patients with chronic stroke (>24 months) who were under grade 3 in dorsiflexor strength with manual muscle test were included and randomized into intervention (Dynamic FES) ($n_1$=7) and control (FES) ($n_2$=5). Both the Dynamic FES group and FES group were given a neuromuscular development treatment. The Dynamic FES group has implemented a total of 60 minutes of exercise treatment and gait training with Dynamic FES application. The FES group, with the addition of applying FES while sitting, has also implemented a total of 90 minutes of gait training on treadmill after the exercise treatment. Both two groups accomplished the program, twice a week, for a total of 24 times in a 12-week period. Exercise treatment, gait training on treadmill, and both Dynamic FES and FES were implemented for 30 minutes each. Korean version activities-specific balance confidence scale (K-ABC) was measured to determine self-efficacy in balance function. Timed up and go (TUG) test was performed to evaluate the physical performance. K-ABC, TUG, Berg balance scale (BBS), modified physical performance test (mPPT) and G-walk were evaluated at baseline and at 12 weeks. After 12 weeks, statistically significant differences (p<.05) were apparent in the Dynamic FES group in the changes in K-ABC and BBS. mPPT, TUG, gait speed, stride length and stance phase duration (%) were compared with the FES group. K-ABC had higher correlation to BBS, along with mPPT to TUG. Our results suggest that walking with Dynamic FES in chronic stroke patients may be beneficial for improving their balance confidence, functional ability and gait.

무지외반증 발가락 교정기 착용 여부가 가상 환경 시뮬레이션 시 보행에 미치는 영향 (Effects of Wearing Toe Braces of Hallux Valgus on Gait during Virtual Environment Simulation)

  • 김동수;이다은;신현아;전지원;우영근
    • PNF and Movement
    • /
    • 제21권1호
    • /
    • pp.27-35
    • /
    • 2023
  • Purpose: Hallux valgus (HV) is one of the most common chronic foot disorders, occurring when the first toe deviates laterally toward the other toe. HV impairs muscle strength and affects gait function (postural sway and gait speed). Thus, this study aims to investigate using the FDM system the effect of wearing braces on gait while wearing a virtual reality (VR) device. Methods: This study was conducted on 28 healthy adults with HV of 15 degrees or more. To compare differences in walking, depending on whether a toe brace can be worn, the subject walked without wearing anything, walked after wearing the VR device, and walked after wearing the VR device and the toe brace, and the FDM system was used for the gait ability measurement analysis. Results: As a result of a one-way repeated analysis of variance, the walking speed-related variables (cadence, velocity, etc.) in the HV group were higher during comfortable walking. In addition, walking while wearing a VR device and walking while wearing a VR device and a toe brace demonstrated more significant values in terms of six gait parameters (double stance phase, loading response, stage, stage, stage, and stage). The maximum pressure of the forefoot was significantly reduced when walking while wearing a VR device and a toe brace compared to comfortable walking, but in all variables, there was no statistically significant difference between walking while wearing a VR device and walking while wearing a VR device and a toe brace. Conclusion: Orthosis with a VR device during gait (OVG) and gait with a VR device (GVR) affect gait in HV patients. However, there was no significant difference between GVR and OVG. Thus, it is necessary to conduct experiments on various HV angles and increase the duration of wearing the toe brace.

걷기 훈련이 재택 노인의 낙상방지 체력에 미치는 영향 (Effect of Walk Training on Physical Fitness for Prevention in A home Bound Elderly)

  • 최명애;전미양;최정안
    • 대한간호학회지
    • /
    • 제30권5호
    • /
    • pp.1318-1332
    • /
    • 2000
  • The purpose of this study was to determine the effect of walk training on leg strength, flexibility, postural stability, balance and gait in home bound elderly women. Eighteen elderly women of the experimental group aged between 70 and 90 years image who have normal vision, hearing and Romberg test. They participated in the 12 week walk training. The subjects of the experimental group practiced walk training 3 times a week for during 12 weeks. During the 40 minute workout, the subjects practiced 5 minutes of warming-up exercises, 30 minutes of conditioning exercises and 10 minutes of a cool-down exercise. The intensity for the conditioning phase was determined by subject' heart rates, which ranged from 60% to 70% of age-adjusted maximum heart rates. The body composition, leg strength, flexibility, postural stability, balance and gait were measured prior to and after the experimental treatment. The body fat, lean body mass, leg strength (ankle dorsiflexor, plantarflexor, inversor and eversir, knee flexor, extensior), flexibility (range of motion of ankle dorsiflexion, plantarflexion, inversion and eversion), and postural stability of the experimental group were significantly greater than those of the control group. Duration of standing on the right foot and that of standing on the left foot of the experimental group was greater than that of the control group. Total balance scores of the experimental group were significantly higher than those of the control group. Among 13 items for balance, the scores of experimental group in balance with eyes closes, turning balance, sternal nudge, neck turning, one leg standing balance and back extension were higher than those of the control group. Total scores of gait of the experimental group were significantly higher than those of the control group following the walking training. Scores of experimental group in step height, step length and walk stance while walking among 9 items for gait were significantly higher than those of the control group. The results suggest that walk training can improve physical fitness for prevention in home bound elderly women.

  • PDF

하지 착용형 외골격 로봇의 효율적 보행패턴 생성 및 에너지 효율성 검증 (Gait Pattern Generation for Lower Extremity Exoskeleton Robot and Verification of Energy Efficiency)

  • 김완수;이승훈;유재관;백주현;김동환;한정수;한창수
    • 한국정밀공학회지
    • /
    • 제29권3호
    • /
    • pp.346-353
    • /
    • 2012
  • The purpose of this study is to verify the energy efficiency of the integrated system combining human and a lower extremity exoskeleton robot when it is applied to the proposed gait pattern. Energy efficient gait pattern of the lower limb was proposed through leg function distribution during stance phase and the dynamic-manipulability ellipsoid (DME). To verify the feasibility and effect of the redefined gait trajectory, simulations and experiments were conducted under the conditions of walking on level ground and ascending and descending from a staircase. Experiments to calculate the metabolic cost of the human body with or without the assistance of the exoskeleton were conducted. The energy consumption of the lower extremity exoskeleton was assessed, with the aim of improving the efficiency of the integrated system.

우리나라 연령별 보행분석 비교연구 (The Comparative Study on Age-associated Gait Analysis in Normal Korean)

  • 윤나미;윤희종;박장성;정화수;김건
    • The Journal of Korean Physical Therapy
    • /
    • 제22권2호
    • /
    • pp.15-23
    • /
    • 2010
  • Purpose: This study was done to establish reference data for temporo-spatial, kinematic and kinetic parameters for normal Koreans as they age. Methods: Normal adults and children without a previous history of musculoskeletal problems were enrolled in this study. The normal subjects were divided by age into three groups: Group I: children ($11.95{\pm}0.29$ years); Group II: young adults ($23.90{\pm}3.67$ years); Group III: older adults ($71.40{\pm}4.08$ years). The temporo-spatial and kinematic data were measured using 6 MX3 cameras while each subject walked through a 10 m walkway at a self-selected speed. The kinetic data were measured using 2 force plates and were calculated by inverse dynamics. Results: Motion patterns are typically associated with a specific phase of the gait cycle. Our results were as follows: 1. There were significant differences between the different age groups in temporo-spatial parameters such as cadence, double support, time of foot off, stride length, step length, and walking speed. 2. There were significant differences between the groups in kinematic parameters such as range of motion (ROM) of the hip, knee and ankle in the sagittal plane, ROM of the pelvis, hip and knee in the coronal plane and ROM of the pelvis, hip and ankle in the transverse plane. 3. There were significant differences between the groups in kinetic parameters such as joint moments of force, joint mechanical power generation or absorption and ground reaction forces. Conclusion: The results of this study can be utilized (a) as a reference for kinematic and kinetic data of gait analysis in normal Koreans, and (b) as an aide in evaluating and treating patients who have problems relating to gait.

Relationship between Dimensionless Leg Stiffness and Kinetic Variables during Gait Performance, and its Modulation with Body Weight

  • Hyun, Seung Hyun;Ryew, Che Cheong
    • 한국운동역학회지
    • /
    • 제26권3호
    • /
    • pp.249-255
    • /
    • 2016
  • Objective: This purpose of this study was to analyze the relationship between dimensionless leg stiffness and kinetic variables during gait performance, and its modulation with body weight. Method: The study sample consisted of 10 young women divided into 2 groups (Control, n=5 and Obese, n=5). Four camcorders (HDR-HC7/HDV 1080i, Sony Corp, Japan) and one force plate (AMTI., USA) were used to analyze the vertical ground reaction force (GRF) variables, center of pressure (COP), low limb joint angle, position of pelvis center and leg lengths during the stance phase of the gait cycle. Results: Our results revealed that the center of mass (COM) displacement velocity along the y-axis was significantly higher in the obese group than that in control subjects. Displacement in the position of the center of the pelvis center (Z-axis) was also significantly higher in the obese group than that in control subjects. In addition, the peak vertical force (PVF) and dimensionless leg stiffness were also significantly higher in the obese group. However, when normalized to the body weight, the PVF did not show a significant between-group difference. When normalized to the leg length, the PVF and stiffness were both lower in the obese group than in control subjects. Conclusion: In the context of performance, we concluded that increased dimensionless leg stiffness during the gait cycle is associated with increased velocity of COM, PVF, and the change in leg lengths (%).

근력, 평형성, 보행 동작훈련이 다운증후군 아동의 보행에 미치는 효과 (The Effects of Muscle, Balance and Walking Training on Gait Kinematics in Children with Down Syndrome)

  • 임비오;김규완;유연주
    • 한국운동역학회지
    • /
    • 제19권1호
    • /
    • pp.107-115
    • /
    • 2009
  • 본 연구는 다운증후군을 가진 아동($9{\sim}12$세) 9명을 대상으로 12주간의 근력, 평형성, 보행 동작 훈련이 보행과 관련된 운동학적 특성에 미치는 효과를 규명하는 것이다. 근력, 평형성, 보행의 변화를 관찰하기 위해서 훈련이 시작되어 12주가 경과한 시점에서 사전 검사와 동일한 방법으로 보행의 운동학적 변인을 측정하였다. 보행의 운동학적 특성은 3차원 영상분석법을 통하여 산출하였다. 12주간의 근력, 평형성, 보행훈련 후에 골반의 회전이 감소하였으며, 무릎과 엉덩 관절의 굴곡이 증가하였으며, 다리를 스윙할 때 엉덩관절의 외전이 감소하였다. 또한, 분당 보폭 수가 증가하였으며 보폭은 감소하였다. 결론적으로 다운증후군 아동들은 12주간의 근력, 평형성, 보행훈련 후에 보행의 운동학적 변인이 향상되었다.