• 제목/요약/키워드: Gait stability

검색결과 233건 처리시간 0.029초

정신지체 아동의 보행능력 향상을 위한 보봐스 접근법 : 개별실험연구 (The Bobath Approach for Walking Improvement on Child with Mental Retardation)

  • 노효련
    • 대한물리의학회지
    • /
    • 제3권2호
    • /
    • pp.113-119
    • /
    • 2008
  • Purpose : In this case report, we demonstrated the improvement of gait ability on the child who has mental retardation with incomplete gait pattern. Methods : The subject was a 4 years old boy with mental retardation. We applied the Bobath approach to the subject. Treatments included to facilitate trunk alignment and stability, and to train weight bearing and shifting, to facilitate pelvis posterior-anterior movement, and to train walk especially stance phase and assist up-down stairs locomotion in environment similar to actual daily life. It was performed 24 sessions for 12 weeks. Results : With this treatment, he could accomplish dynamic standing stability and he could independent walk at the out door after 12 weeks. In gross motor function measure(GMFM), total motor function was improved to 85.6% from 75.7%. Conclusion : The gait ability of child with mental retardation was improved by using the bobath approach.

  • PDF

Calculation and Comparison of Maximum Lyapunov Exponent in Different Direction: An Approach to human Gait Stability

  • Dinesh, Paudel
    • 한국운동역학회지
    • /
    • 제31권1호
    • /
    • pp.24-29
    • /
    • 2021
  • Objective: The goal of this study is to calculate and compare the Maximum Lyapunov Exponent (MLE) for the anteroposterior, mediolateral and vertical displacement of the markers attached to bony land marks of the trunk and foot. Method: Ten young and healthy male subjects (age: 26.5±3.27 years, height: 167.44±5.12 cm, and weight 69.5±7.36) participated in the study. Three-dimensional positional coordinate of eight different trunk and foot marker during walking on tread mill were analysed. Results: MLE values for anteroposterior displacement of the marker were found to be significantly different with MLE values for mediolateral and vertical displacement whereas MLE values for mediolateral displacement of the marker shows no significant difference with the MLE values for vertical displacement of the markers at significance level 0.05. Conclusion: Finding of this study suggest that it is essential to consider the displacement in all three direction to examine the real characteristic of a gait signal.

수중 걷기 운동이 우측 편마비 환자의 발 운동학과 보행 속도에 미치는 영향 (The Effect of Aquatic Gait Training on Foot Kinesiology and Gait Speed in Right Hemiplegic Patients)

  • 이상열;형인혁;심제명
    • 한국콘텐츠학회논문지
    • /
    • 제9권12호
    • /
    • pp.674-682
    • /
    • 2009
  • 본 연구는 편마비 환자에게 수중 걷기 훈련이 미치는 영향에 대해 알아보고자 10주간 수중 걷기 훈련과 지상 걷기 훈련 후 족저압, 거골하관절의 움직임, 보향각, 보행 속도를 측정하였다. 대상자는 20명으로 수중걷기 훈련 그룹(n=10)이 엄지발가락 영역, 뒤꿈치영역, 발허리부분의 족저압이 유의하게 증가하였고, 거골하관절의 움직임과 보향각이 안정화되었으며, 보행 속도 또한 증가함을 보였다. 보행 속도의 증가와 거골하 관절의 움직임 안정화와 보향각의 감소는 수중 걷기가 편마비 환자의 보행 속도 뿐만아니라 보행의 안정화에도 영향을 미친다고 생각되어진다. 또한 엄지발가락 영역과 뒤꿈치 영역의 족저압 증가는 보행시 뒤꿈치 닿기와 발가락 밀기 동작의 회복으로 해석되어진다. 이와 같은 결과로 볼때, 현재 사용되고 있는 치료사에 의한 전문적인 물리치료를 받지 못하는 환자들의 경우 스스로 수중 걷기 훈련만으로도 지상 걷기에 비하여 많은 효과를 볼 수 있을 것으로 기대된다.

보행 로보트의 방향전환을 위한 걸음새 제어 알고리즘 (A gait control algorithm to change the direction for a walking robot)

  • 박성혁;황승구
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1988년도 한국자동제어학술회의논문집(국내학술편); 한국전력공사연수원, 서울; 21-22 Oct. 1988
    • /
    • pp.103-108
    • /
    • 1988
  • A walking robot must have the ability to change the body direction in order to avoid the obstacles. In this paper, we develop a gait control algorithm that can maintain the stable movement of the robot for three different modes of changing directions. The algorithm makes it possible for the robot to have the larger gait stability margin than the threshold value by the method of changing the body speed.

  • PDF

4족 보행기의 경로계획에 따른 걸음걸이 선택 (Gait Selection According to Trajectory Planning for Quadrupedal Walking Macine)

  • 이종길
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1996년도 춘계학술대회 논문집
    • /
    • pp.151-155
    • /
    • 1996
  • In this paper, the continuous motion of a quadrupedal walking machine was studied. The motion planning which is able a walking machine body to precisely follow a three-dimensional curve was developed. A three-dimensional curve was designed based on Bezier curve and obstacle avoidance considerations. Due to the arbitrary motion direction during walking, special strategies of gaits were developed to ensure positive stability. The gait strategies were based on wave and wave-crab gait.

  • PDF

아급성 뇌졸중 환자에게 무릎 신전 보조기기가 균형과 보행에 미치는 효과 및 유용성 : 사례 연구 (The effect and feasibility of knee extension assist orthosis on balance and gait in subacute stroke patients : case study)

  • 심정우;양승재;윤현식
    • 대한물리치료과학회지
    • /
    • 제27권3호
    • /
    • pp.35-44
    • /
    • 2020
  • Background: This study was to confirm the effect and feasibility of knee extension assist orthosis (KEAO) on balance and gait in subacute stroke patients. Design: Case study. Methods: The subjects of the study were 4 subacute stroke patients, who had an onset period of less than 6 months. The limit of stability (LOS) and berg balance scale (BBS), timed up and go test (TUG) were used to verify the dynamic balance ability, static balance ability, and gait ability pre and post and after wearing the knee extension assist orthosis (KEAO). In addition, the satisfaction survey was to confirm the feasibility of the knee extension assist orthosis (KEAO) through the to Korean quebec user evaluation of satisfaction assistive technology 2.0 (K-QUEST 2.0). Results: After the wearing on KEAO, the distance for the limit of stability decreased by mean 541.25±240.46 mm2, and the score on the berg balance scale improved by mean 5±2.71 point, and the time for the timed up and go test deceased by mean 3.75±1.71 second. The stability and durability were found to be full score, and the control, ease, effectiveness were some high score, and the size, weight, comfort were some low score in the satisfaction and feasibility. Conclusion: The knee extension assist orthosis (KEAO) produce in this study was improved the static balance ability, dynamic balance ability and gait ability of subacute stroke patients, and the satisfaction and feasibility were high in the stability, durability and effectiveness of the user.

히스테리시스 특성을 고려한 자계의 유한 요소 해석 (gnetic Fields With Hysteresis Characteristics)

  • 정훈;홍선기;원종수
    • 대한전기학회논문지
    • /
    • 제38권12호
    • /
    • pp.1033-1047
    • /
    • 1989
  • A finite element method for the analysis of magnetic fields with hysteresis characteristics is proposed. The method employs Preisach model to describe hysteresis of magnetic material, so that even multi-branch or minor-loop characteristics can be taken into account. The problem can be considered as the analysis of a nonlinear equation where magnetization depends not only on the present value of the magnetic field but also on the past values, and the problem can be solved by the iteration method. Measurements were carried out on soft ferrite EI core for the comparison with computer solution, and good agreements were obtained. is investigated. A theoretical approach to gait study is proposed in which the static stability margins for periodic gaits are expressed in terms of the kinematic gait formula. The effects fo the stride length on static stability are analyzed and the relations between static stability and initial body configurations are examined. It is shown that the moving velocity can be increased to some extent without affecting stability margins for a given initial body configuration. Computer simulations are performed to verify the analysis.

  • PDF

전자-기계식 클러치를 이용한 장하지 보조기용 무릎관절 자동 제어 장치의 개발 (Development of the Automatic Knee Joint Control System for a Knee-Ankle-Foot Orthosis Using an Electromechanical Clutch)

  • 이기원;강성재;김영호;조강희
    • 대한의용생체공학회:의공학회지
    • /
    • 제22권4호
    • /
    • pp.359-368
    • /
    • 2001
  • A new knee-ankle-foot-orthosis(KAFO) which uses an automatically-controlled electromechanical wrap spring clutch for the knee joint was developed in the present study. It was found that the output voltage from the foot switches of the developed KAFO was proportionally increased with respect to the applied load. The output voltage from the infrared sensor also decreased as the knee flexion angle increased. The knee joint system for the new KAFO weighs only 780g lighter than any other commercially available developed system. In addition, the solenoid reduces the reaction time for the automatic control of the knee joint. The static torque of the clutch was measured for three persons, and it satisfied the normal knee extension moment during the pre-swing. Three-dimensional gait analyses for three different gait patterns (normal gait, locked-knee gait, controlled-knee gait) from five normal subjects were conducted. Controlled-knee gait showed the maximum knee flexion angle of 40.56$\pm9.55^{\circ}$ and the maximum knee flexion moment of 0.20$\pm$0.07Nm/kg at similar periods in the normal gait. Our KAFO system satisfies both stability during stance phase and free knee flexion during the swing phase at the proper period during the gait cycle. Therefore, our KAFO system would be very useful in various low extremity orthotic applications.

  • PDF

교착 회피를 고려한 내고장성 세다리 걸음새 (Fault-Tolerant Tripod Gaits Considering Deadlock Avoidance)

  • 노지명;양정민
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제53권8호
    • /
    • pp.585-593
    • /
    • 2004
  • Fault-tolerant gait planning in legged locomotion is to design gaits with which legged robots can maintain static stability and motion continuity against a failure in a leg. For planning a robust and deadlock-free fault-tolerant gait, kinematic constraints caused by a failed leg should be closely examined with respect to remaining mobility of the leg. In this paper, based on the authors's previous results, deadlock avoidance scheme for fault-tolerant gait planning is proposed for a hexapod robot walking over even terrain. The considered fault is a locked joint failure, which prevents a joint of a leg from moving and makes it locked in a known position. It is shown that for guaranteeing the existence of the previously proposed fault-tolerant tripod gait of a hexapod robot, the configuration of the failed leg must be within a range of kinematic constraints. Then, for coping with failure situations where the existence condition is not satisfied, the previous fault-tolerant tripod gait is improved by including the adjustment of the foot trajectory. The foot trajectory adjustment procedure is analytically derived to show that it can help the fault-tolerant gait avoid deadlock resulting from the kinematic constraint and does not make any harmful effect on gait mobility. The post-failure walking problem of a hexapod robot with the normal tripod gait is addressed as a case study to show the effectiveness of the proposed scheme.

The Immediate Effects of Posterior Pelvic Tilt with Taping on Pelvic Inclination, Gait Function and Balance in Chronic Stroke Patients

  • Wu, Yang-Ting;Choe, Yu-Won;Peng, Cheng;Kim, Myoung-Kwon
    • 대한물리의학회지
    • /
    • 제12권3호
    • /
    • pp.11-21
    • /
    • 2017
  • PURPOSE: The purpose of this study is to identify the immediate effect of posterior pelvic tilt taping on anterior pelvic inclination, gait function, and balance in chronic stroke patients. METHODS: Fourteen chronic stroke subjects were enrolled in this study. Subjects who consented to participate in this cross-over experiment were assigned three interventions: posterior pelvic tilt taping, placebo taping, and no taping, in random order. After tape application, subjects were asked to complete: 1) Anterior pelvic tilt measurement, 2) 10-Meter Walk test, and 3) Limits of stability (LOS) test. To eliminate the learning effect of the tape after tearing off the tape, a 10 minute break was given between posterior pelvic tilt taping intervention and placebo taping intervention. RESULTS: Significant decreases were observed for the anterior pelvic inclination on both sides after posterior pelvic tilt taping application compared with placebo taping and no taping application (p<.05). Post hoc test results differed significantly in the 10-meter walk test after intervention (p<.05). However, there were no significant differences in limits of stability test after intervention (p>.05). CONCLUSION: Posterior pelvic tilt taping in chronic stroke patients decreases the inappropriate anterior pelvic inclination immediately and improves gait function, but it has little effect on balance.