• Title/Summary/Keyword: Gait rehabilitation robot

Search Result 46, Processing Time 0.02 seconds

Effects of Gait Training Using a Robot for Balance in Total Hip Arthroplasty Patients after Bilateral Avascular Necrosis: A Case Study

  • Kim, So-Yeong;Kim, Byeong-Geun;Cho, Woon-Su;Park, Chi-Bok
    • The Journal of Korean Physical Therapy
    • /
    • v.33 no.5
    • /
    • pp.231-237
    • /
    • 2021
  • Purpose: This study sought to investigate the effects of robot-assisted gait training on balance in total hip arthroplasty (THA) patients after bilateral avascular necrosis (AVN). Methods: This case study in two patients utilized an 'A-B-A' single-subject experimental design that included five days of pre-intervention, followed by five days of intervention, and five days of post-intervention. The intervention involved the use of a standing inclined robot (R-bot) for 15 minutes. The outcome measures were evaluated using the Functional Reaching Test (FRT), Time Up to Go (TUG), and the Modified One Leg Standing Test (OLST). Results: Patient 1 showed improvement based on data gathered from baseline A to intervention period B, with results as follows: FRT improved from 27.7 cm to 41.28 cm, OLST LT from 14.03 seconds to 67.37 seconds, OLST RT from 2.94 seconds to 35.97 seconds, and TUG from 12.96 seconds to 7.82 seconds. Patient 2 also showed improvement from baseline A to intervention period B, with results as follows: FRT improved from 17.18 cm to 24.3 cm, OLST LT from 11.53 seconds to 52.01 seconds, OLST RT from 12.99 seconds to 62.19 seconds, and TUG from 27.31 seconds to 12.99 seconds. Conclusion: Based on the results of this study, robotic rehabilitation during the early stages after surgery is effective for promoting balance in patients who have undergone THA due to bilateral AVN.

Analysis of a Dynamic PLS of the Biped Walking RGO-Robot for a Trainning of Rehabilitation (척수마비 재활훈련용 이족보행 RGO 로봇의 Dynam ic PLS 생체역학적 특성분석 <응력해석과 FEM을 중심으로>)

  • 김명회;장대진;박창일;박영필
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.136-141
    • /
    • 2002
  • This paper presents a design and a control of a biped walking RGO-robot and dynamic walking simulation for this system. The biped walking RGO-robot is distinguished from other one by which has a very light-weight and a new AGO type with servo motors. The gait of a biped walking RGO-robot depends on the constrains of mechanical kinematics and initial posture. The stability of dynamic walking is investigated by ZMP(Zero Moment Point) of the biped walking RGO-robot. It is designed according to a human wear type and is able to accomodate itself to human environments. The joints of each leg are adopted with a good kinematic characteristics. To test of the analysis of joint kinematic properties, we did the strain stress analysis of dynamic PLS and the study of FEM with a dynamic PLS. It will be expect that the spinal cord injury patients are able to train effectively with a biped walking AGO-robot.

  • PDF

Design and Control of a Dynamic PLS of the Biped Walking RGO-Robot for a Trainning of Rehabilitation (재활훈련용 이쪽보행 RGO 로봇의 Dynamic PLS 설계와제어 - <응력해석과 FEM을 중심으로>)

  • 김명회;장대진;박창일;박영필
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.238-243
    • /
    • 2002
  • This paper presents a design and a control of a biped walking AGO-robot and dynamic walking simulation for this system. The biped walking RGO-robot is distinguished from other one by which has a very light-weight and a new RGO type with servo motors. The gait of a biped walking AGO-robot depends on the constrains of mechanical kinematics and initial posture. The stability of dynamic walking is investigated by ZMP(Zero Moment Point) of the biped walking AGO-robot. It is designed according to a human wear type and is able to accomodate itself to human environments. The joints of each leg are adopted with a good kinematic characteristics. To test of the analysis of joint kinematic properties, we did the strain stress analysis of dynamic PLS and the study of FEM with a dynamic PLS. It will be expect that the spinal cord injury patients are able to train effectively with a biped walking RGO-robot.

  • PDF

Analysis of stair walking characteristics for the development of exoskeletal walking assist robot (외골격 보행보조로봇 개발을 위한 정상인의 계단보행특성 분석)

  • Cho, H.S.;Chang, Y.H.;Ryu, J.C.;Mun, M.S.;Kim, C.B.
    • Journal of rehabilitation welfare engineering & assistive technology
    • /
    • v.6 no.2
    • /
    • pp.15-22
    • /
    • 2012
  • The mechanical system of wearable walking assist robot needs to be optimized for adapting with human body structure and the planned control algorithm should have a secure procedure when a incongruity situation which can cause musculoskeletal injury occurs because a wearable robot is attached to a body. The understanding of walking or musculoskeletal motions characteristics must be preceeded and analyzed for developing novel wearable walking assist robot. In this study we tried to find out the capacities of powers and torques of joint actuators to design optimized performances of system and to obtain the analysis data to figure out the characteristics of joint movements during some types of walk. The major types of walk and motion are stair climbing and descending, sit-to-stand motion, and slope walking. In this study all these motions were analyzed experimentally except slope walking.

  • PDF

Evaluation of Human Body Effects during Activities of Daily Living According to Body Weight Support Rate with Active Harness System (동적 하네스 체중지지율에 따른 일상생활 동작 시 인체영향평가)

  • Song, Seong Mi;Yu, Chang Ho;Kim, Kyung;Kim, Jae Jun;Song, Won Kyung;Hong, Chul Un;Kwon, Tae Kyu
    • Journal of rehabilitation welfare engineering & assistive technology
    • /
    • v.10 no.1
    • /
    • pp.47-57
    • /
    • 2016
  • In this paper, we measured human body signals in order to verify a active harness system that we developed for gait and balance training. The experimental procedure was validated by tests with 20 healthy male subjects. They conducted motions of Activities of Daily Living(ADL)(Normal Walking, Stand-to-Sit, Sit-to-Stand, Stair Walking Up, and Stair Walking Down) according to body weight support rates (0%, 30%, 50% of subjects' body weight). The effectiveness of the active harness system is verified by using the results of foot pressure distribution. In normal walking, the decrease of fore-foot pressure, lateral soleus muscle and biceps femoris muscle were remarkable. The result of stand-to-sit results motion indicated that the rear-foot pressure and tibialis anterior muscle activities exceptionally decreased according to body weight support. The stair walking down show the marked drop of fore-foot pressure and rectus femoris muscle activities. The sit-to-stand and stair walking up activities were inadequate about the effect of body weight support because the velocity of body weight support system was slower than male's activity.

Effect of Robot Assisted Rehabilitation Based on Visual Feedback in Post Stroke Pusher Syndrome (푸셔 증후군이 있는 뇌졸중 환자에서 시각적 피드백기반 로봇보조 재활치료의 효과)

  • Kim, Min-Su
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.10
    • /
    • pp.562-568
    • /
    • 2016
  • This study to investigated the therapeutic effect of robot-assisted rehabilitation (Lokomat) with virtual reality (VR) on Pusher syndrome (PS) after stroke. A total of 10 patients presented with PS after stroke were recruited. The participants were divided into two groups: Lokomat (n=5) and control groups (n=5). Lokomat and conventional physical therapy (CPT) were performed together in the experimental group, and the patients in the control group were treated with CPT only twice a day. One session of intervention was carried out for 30 minutes five times per week for 4 weeks. Scale for contraversive pushing (SCP), Berg balance scale (BBS), falling index (FI), and Timed up and go test (TUG) were measured before and after the intervention. The Lokomat group produced significantly better outcomes in SCP (p=0.046), BBS (p=0.046), FI (p=0.038), and TUG (p=0.038) compared with the control group after 4 weeks of intervention. In addition, there were significant correlations between SCP and BBS (p=0.024), FI (p=0.039), and TUG (p=0.030). In conclusion, Lokomat with VR more effectively aided recovery from PS after stroke, and restoration of PS symptoms was related with improvement of balance and gait function.