• 제목/요약/키워드: Gait Generation

검색결과 70건 처리시간 0.028초

4각 보행 로봇의 정적 걸음새 생성 (Static Gait Generation of Quadruped Walking Robot)

  • 김남웅;신효철;김국원
    • 한국공작기계학회논문집
    • /
    • 제16권6호
    • /
    • pp.217-222
    • /
    • 2007
  • This paper describes a static gait generation process and a mechanical design process of leg mechanisms for quadruped robots. Actually robot walking is realized with the joint motion of leg mechanisms. In order to calculate the time-angle trajectories for each joint of leg mechanisms, we generate end-tip trajectories with time for each leg in the global inertial coordinate system intuitively, followed by coordinate transformations of the trajectories into the local coordinates system fixed in each leg, finally the angle-time trajectories of each joint of leg mechanisms are obtained with inverse kinematics. The stability of the gait generated in this paper was verified by a multi-body dynamic analysis using the commercial software $ADAMS^{(R)}$. Additionally the mechanical specifications such as gear reduction ratio, electrical specifications of motor and electrical power consumption during walking have been confirmed by the multi-body dynamic analysis. Finally we constructed a small quadruped robot and confirmed the gait.

여성 노인의 장애물과 이중 과제 보행 시 속도 및 하지근육 활성도 변화 (Analysis of Gait Velocity, Lower Muscles Activity on Obstacle and Dual Task Gait in Elderly Women)

  • 조용호
    • 대한물리의학회지
    • /
    • 제6권4호
    • /
    • pp.465-473
    • /
    • 2011
  • Purpose : This study was to evaluate gait velocity and muscle activity on 3 different gait conditions in elderly women. Methods : There were one group was 20's generation(n=12), and the other group was over 60's generation (n=12). The velocity of gait was analysed for using the Footscan system, EMG(MP150) for muscle activity. Subjects were measured 3 gait condition(normal, obstacle-10cm, dual obstacle-10cm. Measured values were used by the independent t-test for analysing between groups, and repeated measurement of ANOVA for analysing within group. Results : The results were as follow: velocity and acticities of lower 4 muscles were significantly differences in experimental group. In control group, there were not significantly differences. Contrast-groups were significantly differences of velocity(obstacle, dual obstacle), muscle activities(soleus-dual obstacle, hamstring-all). Conclusion : These results indicate that elderly people are reduced gait ability in dual task, and obstacle gait. So Elderly women need to training obstacle/dual gait for preventing falling.

Gait Pattern Generation Algorithm for a Biped Robot with Toes

  • Min, Kwan-Sik;Ahn, Cheol-Ki;Lee, Min-Cheol
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2002년도 ICCAS
    • /
    • pp.107.4-107
    • /
    • 2002
  • One of the most important functions of a biped robot is to walk naturally like human. For the human being, toe is very important joint in order to walk naturally. Thus, for a biped robot, the existence of toe joint much affects gait pattern generation and contributes to natural walking, which is similar to the human gait or faster walking like running. Since a conventional biped robot has the feet which consist of soles without toes, it seems difficult to walk naturally. For realizing the gait to be similar to human one, toes are necessary to the biped robot. In this paper, the effect of the toe joint for gait pattern generation is studied. In order to find the effect of toe joint, a biped r...

  • PDF

Biped Gait Generation based on Linear Inverted Pendulum Mode On Flexible Terrain

  • Ueno, Satoshi;Igata, Kazuma;Kumon, Makoto;Mizumoto, Ikuro;Iwai, Zenta
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.203-208
    • /
    • 2003
  • In this paper, gait generation algorithm based on Linear Inverted Pendulum Mode is extended considering that the terrain is uncertain and flexible. Deformation of the soft terrain by the weight of the biped robot is taken into account to design the desired motion of the swing leg. Landing time disagreement caused by dynamics of the robot is also considered and a method to adjust gait is proposed. Results of numerical simulation show the effectiveness of the proposed method.

  • PDF

관절 공간에서의 GP 기반 진화기법을 이용한 4족 보행로봇의 걸음새 자동생성 (Automatic Gait Generation for Quadruped Robot Using a GP Based Evolutionary Method in Joint Space)

  • 서기성;현수환
    • 제어로봇시스템학회논문지
    • /
    • 제14권6호
    • /
    • pp.573-579
    • /
    • 2008
  • This paper introduces a new approach to develop a fast gait for quadruped robot using GP(genetic programming). Planning gaits for legged robots is a challenging task that requires optimizing parameters in a highly irregular and multidimensional space. Several recent approaches have focused on using GA(genetic algorithm) to generate gait automatically and shown significant improvement over previous results. Most of current GA based approaches used pre-selected parameters, but it is difficult to select the appropriate parameters for the optimization of gait. To overcome these problems, we proposed an efficient approach which optimizes joint angle trajectories using genetic programming. Our GP based method has obtained much better results than GA based approaches for experiments of Sony AIBO ERS-7 in Webots environment.

무릎관절 골관절염 환자의 보행기 보행에서 생역학적 특성 (Biomechanical Properties of the Anterior Walker Dependent Gait of Patients with Knee Osteoarthritis)

  • 이인희;권기홍;박상영
    • The Journal of Korean Physical Therapy
    • /
    • 제25권5호
    • /
    • pp.239-245
    • /
    • 2013
  • Purpose: Osteoarthritis occurs in many different joints of the body, causing pain, stiffness, and decreased function. The knee is the most frequently affected joint of the lower limb. The aim of this study was to investigate the differences of biomechanics between independent gait and anterior walker dependent gait of patients with osteoarthritis of the knee. Methods: Lower limb joint kinematics and kinetics were evaluated in 15 patients with knee osteoarthritis when walking independently and when walking with an anterior walker. Participants were evaluated in a gait laboratory, with self-selected gait speed and natural arm swing. Results: When walking with a dependent anterior walker, participants walked significantly faster (p<0.01), using a longer stride length (p<0.01), compared to independent gait. When walking with a dependent anterior walker, participants exhibited significantly greater knee flexion/extension motion (p<0.01) and lower knee flexion moment (p<0.05) compared to independent gait. When walking with a dependent anterior walker, participants showed significantly greater peak ankle motion (p<0.01), ankle dorsiflexion/plantarflexion moments (p<0.01), and ankle power generation (p<0.05) compared to independent gait. Conclusion: These biomechanical properties of gait, observed when participants walked with a dependent anterior walker, may be a compensatory response to impaired knee function to allow sufficient power generation for propulsion. Therefore, rehabilitative strategies for patients with osteoarthritis of the knee are needed in order to improve not only knee function but also hip and ankle function.

직교좌표공간과 관절공간에서의 4족 보행로봇의 두 가지 진화적 걸음새 생성기법 (Two Evolutionary Gait Generation Methods for Quadruped Robots in Cartesian Coordinates Space and Join Coordinates Space)

  • 서기성
    • 전기학회논문지
    • /
    • 제63권3호
    • /
    • pp.389-394
    • /
    • 2014
  • Two evolutionary gait generation methods for Cartesian and Joint coordinates space are compared to develop a fast locomotion for quadruped robots. GA(Genetic Algorithm) based approaches seek to optimize a pre-selected set of parameters for the locus of paw and initial position in cartesian coordinates space. GP(Genetic Programming) based technique generate few joint trajectories using symbolic regression in joint coordinates space as a form of polynomials. Optimization for two proposed methods are executed using Webots simulation for the quadruped robot which is built by Bioloid. Furthermore, simulation results for two proposed methods are analysed in terms of different coordinate spaces.

인간공학적 디자인을 적용한 보행가이드 로봇의 개발 (Development of the Gait Assistant Mobile Robot using Ergonomics Design)

  • Jang, J.H.;Park, T.J.;Han, C.S.;Han, J.S.
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2004년도 추계학술대회 논문집
    • /
    • pp.1166-1171
    • /
    • 2004
  • In this study, the concept of autonomous mobility is applied to a gait support mobile robot. The aim of the development of the service robot is to assist the elderly with gait rehabilitation. This study proposes an ergonomic service robot design parameter. The gait assistant path pattern is derived from analysis of the elderly gait. A lever is installed in the AMR in order to measure both the pulling force and the leading force of the elderly. The path generation of the mobile robot is developed through consideration and analysis of elderly gait patterns. The ergonomic design parameters (dimensions, action scope and working space) are determined based on moving scope of the elderly. The gait assistant mobile robot was offered the elderly guide service and internet service based on the ergonomic design parameters.

  • PDF

허리 관절을 갖는 4족 로봇의 경사면 보행을 위한 걸음새 생성 방법 (Gait Generation Method for a Quadruped Robot with a Waist Joint to Walk on the Slope)

  • 김국화;최윤호;박진배
    • 한국지능시스템학회논문지
    • /
    • 제22권5호
    • /
    • pp.617-623
    • /
    • 2012
  • 본 논문에서는 4족 로봇의 허리 관절을 이용하여 효율적인 경사면 보행을 위한 걸음새 생성 방법을 제안한다. 허리 관절을 갖는 4족 로봇의 기구학적 모델은 Denavit-Hartenberg 표현 방법과 대수적 방법을 이용하여 유도하고, 다리 이동 순서는 물결 걸음새(wave gait)를 사용한다. 한편 제안한 걸음새 생성 방법에서는 기구적 제한과 보폭의 감소를 완화하기 위해 경사면의 경사도에 따라 적절한 상체 및 하체의 허리 관절각을 결정하고, 에너지 안정도 여유(energy stability margin)를 증가시키기 위해 도달 영역(workspace)의 탐색을 통해 발끝 위치를 결정한다. 마지막으로, 컴퓨터 모의 실험을 통해 본 논문에서 제안한 알고리듬의 효용성 및 실제 적용 가능성을 검증한다.

도마뱀 생체 데이터를 이용한 속보 걸음새 생성 (Trotting Gait Generation Based on the Lizard Biometric Data)

  • 김창회;신호철;이흥호
    • 전기학회논문지
    • /
    • 제62권10호
    • /
    • pp.1436-1443
    • /
    • 2013
  • A variety of studies on imitating the skeletal structure and the gait of legged animals have been done in order to develop walking robots which have an ability to adapt to atypical environments. In this paper, we analyzed the gait of a Bearded dragon lizard using the motion capture system, proposed a calibration scheme of the motion data and generated the trotting gait of a lizard based on the calibrated data. Also, we constructed the dynamic model based on the biometric data of a Bearded dragon lizard and applied the trotting gait of the lizard to the dynamic model. We verified the validity of the gait with the commercial dynamic simulation software.