• 제목/요약/키워드: Gait Characteristics

검색결과 262건 처리시간 0.03초

Effects of Slope Changes During Body Weight-Supported Treadmill Training on Gait Characteristics in Patients With Hemiplegia

  • Hwang, Young-In;An, Duk-Hyun
    • Physical Therapy Korea
    • /
    • 제15권4호
    • /
    • pp.10-17
    • /
    • 2008
  • The purpose of this study was to determine the therapeutic effect of slope changes of the treadmill with body weight-supported training on gait characteristics in patients with hemiplegia. The volunteered subjects were divided into 3 groups based upon slope changes: control group ($0^{\circ}$ incline), $7^{\circ}$ group ($7^{\circ}$ incline), $12^{\circ}$ group ($12^{\circ}$ incline), They were trained the body weight-supported treadmill training (BWSTT) for 8 weeks. All subjects were supported up to 40% of their body weight on the treadmill training and the support was gradually decreased to 0~10% as the subjects were adapted to the training. There were significant improvements of walking velocity, step length of the affected side, the asymmetry ratio of step length in $7^{\circ}$ group (57.80 cm/s, 67.25 cm, .14), $12^{\circ}$ group (71.00 cm/s, 71.00 cm, .11) than control group (40.62 cm/s, 55.00 cm, .74) (p<.05): there were no differences between $7^{\circ}$ group and $12^{\circ}$ group in the all outcomes (p>.05). Both $7^{\circ}$ group and $12^{\circ}$ group scored higher than the control group in those outcomes and finally the effects of slopes changes of the treadmill were effective on gait characteristics of patients. But it s till remains undetermined what degree on the treadmill might be better to train the hemipareric patients. Therefore, more studies are required to look into minutely the changes of slopes of the treadmill influencing on gait characteristics.

  • PDF

Analysis of Obstacle Gait Using Spatio-Temporal and Foot Pressure Variables in Children with Autism (자폐성 장애 아동의 시공간 및 압력분포 변인을 통한 장애물보행 분석)

  • Kim, Mi-Young;Choi, Bum-Kwon;Lim, Bee-Oh
    • Korean Journal of Applied Biomechanics
    • /
    • 제21권4호
    • /
    • pp.459-466
    • /
    • 2011
  • The purpose of this study was to analyze of obstacle gait using spatio-temporal and foot pressure variables in children with autism. Fifteen children with autism and fifteen age-matched controls participated in the study. Spatio-temporal and foot pressure variables was investigated using GAITRite pressure sensor system. Each footprint was divided into 12 equal trapezoids and after that the hindfoot, midfoot and forefoot analysis was developed. Independent t-test was applied to compare the gait variables between the groups. The results showed that the autism group were significantly decreased in velocity, cadence, cycle and swing time compared to the control group. The autism group were significantly increased in step width and toe out angle compared to the control group. The autism group were significantly increased at midfoot and forefoot of lateral part of footprint and forefoot of medial part of footprint in the peak time compared to the control group. The autism group were significantly increased at midfoot and hindfoot in $P^*t$, at midfoot in active area, and at hindfoot in peak pressure compared to the control group. In conclusion, the children with autism showed abnormal obstacle gait characteristics due to muscle hypotonia, muscle rigidity, akinesia, bradykinesia and postural control impairments.

Optimal Gait Trajectory Generation and Optimal Design for a Biped Robot Using Genetic Algorithm (유전자 알고리즘을 이용한 이족 보행 로봇의 최적 설계 및 최적 보행 궤적 생성)

  • Kwon Ohung;Kang Minsung;Park Jong Hyeon;Choi Moosung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • 제10권9호
    • /
    • pp.833-839
    • /
    • 2004
  • This paper proposes a method that minimizes the consumed energy by searching the optimal locations of the mass centers of links composing of a biped robot using Real-Coded Genetic Algorithm. Generally, in order to utilize optimization algorithms, the system model and design variables must be defined. Firstly, the proposed model is a 6-DOF biped robot composed of seven links, since many of the essential characteristics of the human walking motion can be captured with a seven-link planar biped walking in the saggital plane. Next, Fourth order polynomials are used for basis functions to approximate the walking gait. The coefficients of the fourth order polynomials are defined as design variables. In order to use the method generating the optimal gait trajectory by searching the locations of mass centers of links, three variables are added to the total number of design variables. Real-Coded GA is used for optimization algorithm by reason of many advantages. Simulations and the comparison of three methods to generate gait trajectories including the GCIPM were performed. They show that the proposed method can decrease the consumed energy remarkably and be applied during the design phase of a robot actually.

Effect of Gender Difference on the Functional Asymmetry during Preferred Walking Speed

  • Hyun, Seunghyun;Ryew, Checheong
    • International journal of advanced smart convergence
    • /
    • 제9권2호
    • /
    • pp.49-57
    • /
    • 2020
  • We have not identified on what gender difference during gait at a pace of one's preferred velocity effects on the function of bilateral lower limb. This study was undertaken to investigate a difference of gait strategy by gender during gait at a one's preferred velocity of participants of adult male and female (n=20). Cinematographic data for motion analysis, ground reaction force (GRF) variables, and muscle volume of lower limb were analyzed. Significant difference of variables on movement of center of mass whole body, joint angle and moment of lower limb, and ground reaction force were tested by 2-way ANOVA analysis (P<0.05). Male group showed more muscle volume than female, and both showed more volume in dominant leg than non-dominant. Main effect by bilateral leg during gait showed higher difference in right than left leg in change of vertical position of center of mass (maximal, minimal). Main effect by gender in vertical change of position and velocity of center of mass showed higher difference in male than female (maximal, minimal). Hip joint showed more flexed and extended angle in male than female, and also dorsiflexion of ankle and flexion moment of knee and hip joint showed higher in male than female group. Therefore, this result was assumed that dominant showed furthermore more contribution for propulsive function than non-dominant leg. Gender difference showed in strategy controlling of biomechanical characteristics, and perhaps influenced by muscle volume.

Analysis on a Hip Joint System of New RGO Using Accelerometers (가속도계를 이용한 왕복보행보조기의 고관절 시스템 해석 -인체 진동해석과 FEM 해석을 중심으로-)

  • 김명회;장대진;장영재;박영필
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 한국소음진동공학회 2003년도 춘계학술대회논문집
    • /
    • pp.882-887
    • /
    • 2003
  • This paper presented a design and control of a new RGO(reciprocating gait orthosis)and its simulation. The new RGO was distinguished from the other one by which had a very light-weight and a new RGO(reciprocating gait orthosis) system. The vibration evaluation of the hip joint system on the new RGO(reciprocating gait orthosis)was used to access by the 3-axis accelerometer with a low frequency vibration of less than 30 ㎐. The gait of the new RGO depended on the constrains of mechanical kinematics and the initial posture. The stability of dynamic walking was investigated by analyzing the ZMP (zero moment point) of the new RGO. It was designed according to the human wear type and was able to accomodate itself to the environments of S.C.I. Patients. The joints of each leg were adopted with a good kinematic characteristics. To analyse joint kinematic properties, we made the hip joint system of FEM and the hip joint system by 1-axis and 3-axis Accelerometers.

  • PDF

The Effects of Repetitive Transcranial Magnetic Stimulation on the Gait of Acute Stroke Patients

  • Ji, Sang-Goo;Kim, Myoung-Kwon
    • Journal of Magnetics
    • /
    • 제20권2호
    • /
    • pp.129-132
    • /
    • 2015
  • The aim of the present study was to examine whether repetitive transcranial magnetic stimulation (rTMS) can improve gait ability of acute stage stroke patients. This study was conducted with 39 subjects who were diagnosed as having a hemiparesis due to stroke. The experimental group included 20 subjects who underwent repetitive transcranial magnetic stimulation and the control group included 19 subjects who underwent sham therapy. The stroke patients in the experimental group underwent conventional rehabilitation therapy and rTMS was applied daily to the hotspot of the lesional hemisphere. The stroke patients in the control group underwent sham rTMS and conventional rehabilitation therapy. Participants in both groups received therapy five days per week for four weeks. Temporospatial gait characteristics, such as stance phase, swing phase, step length in affected side, velocity, and cadence, were assessed before and after the four week therapy period. A significant difference was observed in post-treatment gains for the step length in the affected side, velocity, and cadence between the experimental group and control group ( p < 0.05). However, no significant differences were observed between the two groups on stance phase and swing phase ( p > 0.05). We conclude that rTMS may be beneficial in improving the effects of acute stage stroke on gait ability.

Changes of Lower Limb Joints Stiffness with Gait Speed in Knee Osteoarthritis (무릎 골관절염 환자의 보행속도에 따른 하지 관절 강성 변화)

  • Park, Hee-Won;Park, Su-Kyung
    • Journal of the Korean Society for Precision Engineering
    • /
    • 제29권7호
    • /
    • pp.723-729
    • /
    • 2012
  • Spring-like leg models have been employed to explain various dynamic characteristics in human walking. However, this leg stiffness model has limitations to represent complex motion of actual human gait, especially the behaviors of each lower limb joint. The purpose of this research was to determine changes of total leg stiffness and lower limb joint stiffness with gait speed in knee osteoarthritis. Joint stiffness defined as the ratio of the joint torque change to the angular displacement change. Eight subjects with knee osteoarthritis participated to this study. The subject walked on a 12 m long and 1 m wide walkway with three sets of four different randomly ordered gait speeds, ranging from their self-selected speed to maximum speed. Kinetic and kinematic data were measured using three force plates and an optical marker system, respectively. Joint torques of lower limb joints calculated by a multi-segment inverse dynamics model. Total leg and each lower limb joint had constant stiffness during single support phase. The leg and hip joint stiffness increased with gait speed. The correlation between knee joint angles and torques had significant changed by the degree of severity of knee osteoarthritis.

Characteristics of Pelvic Ranges According to Artificial Leg Length Discrepancy During Gait: Three-Dimensional Analysis in Healthy Individuals (보행 중 인위적 다리길이 차이에 따른 3차원적 골반 가동범위의 특성)

  • Kim, Yongwook
    • Journal of The Korean Society of Integrative Medicine
    • /
    • 제7권2호
    • /
    • pp.59-67
    • /
    • 2019
  • Purpose : The purpose of this study was to analyze the dynamic range of motion (ROM) of pelvic and translation of center of mass (COM) when wearing different shoe insole lifts according to leg length discrepancy (LLD) during free speed gait. Methods : Thirty-five healthy adults were participated in this study. Kinematic data were collected using a Vicon motion capture system. Reflective and cluster 40 markers attached to participants lower extremities and were asked to walk in a 6 m gait way under three different shoe lift conditions (without any insole, 1 cm insole, and 2 cm insole). The pelvic ROM and COM translation in three planes were sorted using a Nexus software, and a Visual3D motion analysis software was used to coordinate all kinematic data. Results : There were significantly increased maximal pelvic elevation and total pelvic range in coronal plane when wearing a standard shoe with 2 cm insole lift during gait (p<.05). When wearing a standard shoe with 2 cm insole lift, the total range of the pelvic segment were significantly different in all three motion planes (p<.05). Conclusion : Although LLD of less than 2 cm develops abnormal movement pattern of the pelvis and may cause of musculoskeletal diseases such as low back pain, hip and knee joint osteoarthritis, therefore intensive various physical therapy interventions for LLD are needed.

The Effect of Side-Step Tasks Based Circular Training Program on Balance and Gait in Stroke Patients

  • Sang Jun Son;Joong-Hwi Kim
    • Physical Therapy Rehabilitation Science
    • /
    • 제11권4호
    • /
    • pp.384-390
    • /
    • 2022
  • Objective: The purpose of this study was to investigate the effect of the side-step tasks based circular training program (STCT) on balance and gait characteristics in stroke patients. Design: A randomized controlled trial Methods: Twenty-four stroke patients were randomly divided into two groups of twelve patients each. One group was applied with the STCT whereas the other group was treated with conservative physiotherapy (CP). The ability of gait was measured in 10m walking test and stride length on both side using BTS G-WALK (BTS Bioengineering S.p.A, Italy) and the ability of balance was measured in Berg Balance Scale (BBS) and Timed Up and Go Test (TUG). Results: The STCT group was significant differences in the balance parameters of BBS and TUG (p<0.05) and showed significant differences in gait variables in 10m walking speed, stride length of affected and non-affected side after the experiment before and after the experiment (p<0.05). In addition, the STCT group showed a significant difference in BBS compared to the control group (p<0.05). Conclusions: The results of this study confirmed that the side-step tasks based circular training program (STCT) improves balance and walking ability in stroke patients. STCT is expected to be used as a useful intervention method for stroke rehabilitation.

Analysis of the Gait Characteristics and Interaction among Bilateral Lower Extremity Joints According to Shoe'S Heel Heights in Young Women (젊은 성인 여성의 구두 힐 높이 별 보행특성 및 하지관절 간 상호작용 비교분석)

  • Hyun, Seung-Hyun;Ryew, Che-Cheong
    • Korean Journal of Applied Biomechanics
    • /
    • 제24권4호
    • /
    • pp.445-453
    • /
    • 2014
  • The purpose of this study was to analyze the gait characteristics and interaction between lower extremity joints according to shoe's heel heights in young women. Participants were selected as subject consisted of young and healthy women (age: $23.71{\pm}1.49yrs$, height: $165.92{\pm}2.00cm$, body weight: $54.37{\pm}3.46kg$) and walked with 3 types of shoe's high-heel (0, 5, 9 cm). The variables analyzed consisted of the displacement of Y axis in center of mass ([COM]; (position, velocity), front rear(FR) and left right(LR) angle of trunk, lower extremity joint angle (hip, knee, ankle) and asymmetric index (AI%). The displacement of Y axis in COM position showed the greater movement according to increase of shoe's heel heights, but velocity of COM showed the decrease according to increase of shoe's heel heights during gait. The hip and knee angle didn't show significant difference statistically according to increase of shoe's heel height, but left hip and knee showed more extended posture than those of right hip and knee angle. Also ankle angle didn't show significant difference statistically, but 9 cm heel showed more plantarflexion than those of 5 cm and 0 cm. The asymmetric index (AI%) showed more asymmetric 9 cm heel than those of 0 cm and 5 cm. The FR and LR angle in trunk tilting didn't show significant difference statistically according to the increase of shoe's heel height during gait in young women.