• 제목/요약/키워드: Gain-scheduling Control

검색결과 138건 처리시간 0.031초

장력제어를 위한 게인 스케줄링 (Gain Scheduling for Tension Control)

  • 이동욱;박성한;안병준;이만형
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2002년도 춘계학술대회 논문집
    • /
    • pp.505-509
    • /
    • 2002
  • The looper control of hot strip finishing mill is one of the most important control item In hot strip rolling mill process. Loopers are placed between finishing mill stands and control the mass flow of the two stands. Another important action of the looper is to control the strip tension which influences on the width of the strip. So it is very important to control both the looper angle and the strip tension simultaneously but the looper angle and the strip tension are strongly interacted by each other. The gain scheduling is to break the control design process into two steps. First, one designs local linear controllers based on linerizations of the nonlinear system at several different operating conditions. Second, a global nonlinear controller for the nonlinear system is obtained by interpolating.

  • PDF

퍼지 게인 스케쥴링을 이용한 자율 무인 잠수정의 자세 제어 (Motion Control of an AUV (Autonomous Underwater Vehicle) Using Fuzzy Gain Scheduling)

  • 박랑은;황은주;이희진;박민용
    • 제어로봇시스템학회논문지
    • /
    • 제16권6호
    • /
    • pp.592-600
    • /
    • 2010
  • The problem of motion control for AUV (Autonomous Underwater Vehicles) is addressed. The utilization of such robotic vehicles has gained an increasing importance in many marine activities. In this paper the objective is to describe how to design and apply FGS (Fuzzy Gain Scheduling) PD (Proportional Derivative) controller for an AUV (Autonomous Underwater Vehicle) to control the yaw and depth of the vehicle by keeping the path of the navigation to a desired point, and/or changing the path according to a set point.

Robust Speed Control of PMSM with Fuzzy Gain Scheduling

  • Won, Tae-Hyun;Kim, Mun-Soo;Park, Han-Woong;Lee, Man-Hyung
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.111.1-111
    • /
    • 2001
  • In this paper, a robust speed control is proposed for Permanent Magnet Synchronous Motor system. PMSM without reduction gear has been widely used in high performance application such as robots and machine tools. It is well known that the control performance of the PMSM is very sensitive to load disturbance and system parameter variation. The idea of the proposed speed controller based on combination of sliding mode control with fuzzy gain scheduling. The sliding mode controller leads to fast system dynamics of slight sensitivity to the load disturbance and system parameter variations, the fuzzy gain scheduling mechanism reduces the chattering phenomenon. The simulation results have proved that the proposed control scheme provides a robust control performance under load disturbance and system parameter variation.

  • PDF

이득 조절 제어기법을 이용한 모바일 로봇의 경로 추종 제어 (Tracking Control of a Mobile Robot using Gain-scheduling Control Method)

  • 권해영;최호림
    • 전기학회논문지
    • /
    • 제62권3호
    • /
    • pp.401-406
    • /
    • 2013
  • The mobile robot is one of the widely-used systems in service industry. We propose a gain-scheduling feedback controller for the tracking control of the mobile robot. The benefit of our proposed controller is that it avoids the singularity issue occurs with the controllers suggested in [4], [10]. Moreover, we show the stability analysis of the controlled system via a Lyapunov stability approach such that the exponential convergence of tracking error to zero is analytically provided. The simulation results show the validity of the proposed controller and improved control performance over the conventional controller.

Fuzzy PI with Gain Scheduling Control for a Flexible Joint Robot

  • Hidenori, Kimura;Lee, Sang-Gu
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.93.2-93
    • /
    • 2001
  • This paper presents the implementation of fuzzy PI gain scheduling controller (FPICGS) for controlling flexible joint robot arms with uncertainties from time-varying load. The term FPICGS is called based on a combination of fuzzy PI control scheme with a set of rule bases. Principle of design for a FPICGS is given along with the implementation of the designed computer aided control system. The experiment reveals an effectiveness of the proposed control scheme for flexible joint robot arms driven by a DC motorhooked with a spring which both parameters are completely unknown parameters ...

  • PDF

산업용 로봇의 유연관절 제어기 설계: Part 2 - 진동억제 제어 및 게인스케듈링 (Controller Design for Flexible Joint of Industrial Robots: Part 2 - Vibration Suppression Control and Gain-Scheduling)

  • 박종현;이상훈
    • 제어로봇시스템학회논문지
    • /
    • 제12권4호
    • /
    • pp.371-379
    • /
    • 2006
  • Increasing requirements for the high quality of industrial robot performance made the vibration control issue very important because the vibration makes it difficult to achieve quick response of robot motion and may bring mechanical damage to the robot. This paper presents a vibration control solution for industrial robots which have flexible joints. The joint flexibility is modeled as a two-mass system. And we analyze the vibration problem of a classical P-PI controller when it used for the flexible joints of industrial robots. Then a state feedback controller is designed for vibration suppression of the two-mass system. Finally, a gain-scheduling method is designed for maintaining control performance in spite of the time-varying nature of each joint's load side inertia. Simulation and experimental results show effective vibration suppression and uniform properties in overshoot in spite of the variation of load. The result of this study can be applied to the appropriate gain manipulation of many other mechatronic devices which have the two-mass system with varying load side inertia.

선박 주행속도 변화를 고려한 Rudder-Roll Stabilization System 설계에 관한 연구 (A Study on Rudder-Roll Stabilization System Design for Ship with Varying Ship Speed)

  • 김영복;채규훈
    • 제어로봇시스템학회논문지
    • /
    • 제8권5호
    • /
    • pp.363-372
    • /
    • 2002
  • In ship operation, the roll motions can seriously degrade the performance of mechanical and personnel effectiveness. So many studies for the roll stabilization system design have been performed and good results have been achieved. In many studies, the stabilizing fins are used. Recently rudders, which have been extensively modified, have been used exclusively to stabilize the roll. But, in the roll stabilization control system, the control performance is very sensitive to the ship speed. So, we can see that it is important to consider the ship speed in the rudder roll control system design. The gain-scheduling control technique is very useful in the control problem incorporating time varying parameters which can be measured in real time. Based on this fact, in this paper we examine the;$H_{\infty}$-Gain Scheduling control design technique. Therefore, we assume that a parameter, the ship speed which can be estimated in real time, is varying and apply the gain-scheduling control technique to design the course keeping and anti-rolling control system far a ship. In this control system, the controller dynamics is adjusted in real-time according to time-varying plant parameters. The simulation result shows that the proposed control strategy is shown to be useful for cases when the ship speed is varying and robust to disturbances like wind and wave.

로프 길이변화를 고려한 크레인의 흔들림 제어에 관한 연구: Gain-Scheduling 기법에 의한 제어기 설계 (A Study on the Sway Control of a Container Crane with Varying Rope Length Based on Gain-Scheduling Approach)

  • 김영완;김영복
    • 동력기계공학회지
    • /
    • 제8권3호
    • /
    • pp.58-66
    • /
    • 2004
  • The sway motion control problem of a container hanging on the trolly is considered in the paper. In the container crane control problem, suppressing the residual swing motion of the container at the end of acceleration, deceleration or the case of that the unexpected disturbance input exists is main issue. For this problem, in general, many trolley motion control strategies are introduced and applied. In this paper, we introduce and synthesize a swing motion control system in which a small auxiliary mass is installed on the spreader made by ourselves. In this control system, the actuator reacting against the auxiliary mass applies inertial control forces to the container to reduce the swing motion in the desired manner. Especially, we apply the $H_{\infty}$ based gain-scheduling control technique the anti-sway control system design problem of the controlled plant. In this control system, the controller dynamics are adjusted in real-time according to time-varying plant parameters. And the simulation result shows that the proposed control strategy is shown to be useful to the case of time-varying system and, robust to disturbances like winds and initial sway motion.

  • PDF

로프 길이 변화를 고려한 크레인의 흔들림 제어에 관한 연구;Gain-Scheduling 기법에 의한 제어기 설계 (A Study on the Sway Control of a Container Crane with Varying Rope Length Based on Gain-Scheduling Approach)

  • 김영완;김영복
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 추계학술대회
    • /
    • pp.631-636
    • /
    • 2004
  • The sway motion control problem of a container hanging on the trolly is considered in the paper. In the container crane control problem, suppressing the residual swing motion of the container at the end of acceleration, deceleration or the case of that the unexpected disturbance input exists is main issue. For this problem, in general, many trolley motion control strategies are introduced and applied. In this paper, we introduce and synthesize a swing motion control system in which a small auxiliary mass is installed on the spreader made by ourselves. In this control system, the actuator reacting against the auxiliary mass applies inertial control forces to the container to reduce the swing motion in the desired manner. Especially, we apply the $H_{\infty}$ based gain-scheduling control technique the anti-sway control system design problem of the controlled plant. In this control system, the controller dynamics are adjusted in real-time according to time-varying plant parameters. And the experiment result shows that the proposed control strategy is shown to be useful to the case of time-varying system and, robust to disturbances like winds and initial sway motion.

  • PDF

퍼지논리제어와 LMI기법을 이용한 강인 게인 스케줄링 (Robust Gain Scheduling Based on Fuzzy Logic Control and LMI Methods)

  • 지효선;구근모;이훈구;탁민제;홍성경
    • 제어로봇시스템학회논문지
    • /
    • 제7권1호
    • /
    • pp.1162-1170
    • /
    • 2001
  • This paper proposes a practical gain-scheduling control law considering robust stability and performance of Linear Parameter Varying(LPV) systems in the presence of nonlinearities and uncertainties. The proposed method introduces LMI-based pole placement synthesis and also associates with a recently developed fuzzy control system based on Takagei-Sugenos fuzzy model. The sufficient conditions for robust controller design of linearized local dynamics and robust stabilization of fuzzy control systems are reduced to a finite set of Linear Matrix inequalities(LMIs) and solved by using co-evolutionary algorithms. The proposed method is applied to the longitudinal acceleration control of high performance aircraft with linear and nonlinear simulations.

  • PDF