• 제목/요약/키워드: Gain Scheduler

검색결과 24건 처리시간 0.023초

Distributed Control of the Arago's Disc System with Gain Scheduler

  • Ibrahim, Lateef Onaadepo;Choi, Goon-Ho
    • 반도체디스플레이기술학회지
    • /
    • 제16권3호
    • /
    • pp.25-30
    • /
    • 2017
  • Arago's disk system consists of a speed controller of the DC motor (inner loop controller) and a position controller of the magnetic bar angle (main controller), which are implemented by the design of the PI and PID controller, respectively. First, we analyzed the nonlinear characteristics of the Arago disk system and found the operating point range of three locations as a result. In this paper, a gain scheduler method was applied to guarantee a constant control performance in the range of $0{\sim}130^{\circ}C$, and a structure to change the controller according to the control reference value based on the previously obtained operating points was experimentally implemented. The Distributed Control Systems (DCS) configuration using the Controller Area Network (CAN) was used to verify the proposed method by improving the operational efficiency of the entire experimental system. So, simplicity of the circuit and easy diagnosis were achieved through a single CAN bus communication.

  • PDF

스마트 무인기의 천이 스케줄러 설계개선 (Design Update of Transition Scheduler for Smart UAV)

  • 강영신;유창선;김유신;안성준
    • 한국항공운항학회지
    • /
    • 제13권2호
    • /
    • pp.14-26
    • /
    • 2005
  • A tilt-rotor aircraft has various flight modes : helicopter, airplane, and conversion. Each of flight mode has unique and nonlinear flight characteristics. Therefore the gain schedules for whole flight envelope are required for effective flight performance. This paper proposes collective, flap, and nacelle angle scheduler for whole flight envelope of the Smart UAV(Unmanned Air Vehicle) based on CAMRAD(Comprehensive Analytical Model of Rotorcraft Aerodynamics and Dynamics) II analysis results. The scheduler designs are improved so that the pitch attitude angle of helicopter mode was minimized. The range of scheduler are reduced inside of engine performance limits. The conversion corridor and rotor governor are suggested also.

  • PDF

Fuzzy Gain Scheduling of Velocity PI Controller with Intelligent Learning Algorithm for Reactor Control

  • Kim, Dong-Yun;Seong, Poong-Hyun
    • 한국원자력학회:학술대회논문집
    • /
    • 한국원자력학회 1996년도 추계학술발표회논문집(1)
    • /
    • pp.73-78
    • /
    • 1996
  • In this study, we proposed a fuzzy gain scheduler with intelligent learning algorithm for a reactor control. In the proposed algorithm, we used the gradient descent method to learn the rule bases of a fuzzy algorithm. These rule bases are learned toward minimizing an objective function, which is called a performance cost function. The objective of fuzzy gain scheduler with intelligent learning algorithm is the generation of adequate gains, which minimize the error of system. The condition of every plant is generally changed as time gose. That is, the initial gains obtained through the analysis of system are no longer suitable for the changed plant. And we need to set new gains, which minimize the error stemmed from changing the condition of a plant. In this paper, we applied this strategy for reactor control of nuclear power plant (NPP), and the results were compared with those of a simple PI controller, which has fixed gains. As a result, it was shown that the proposed algorithm was superior to the simple PI controller.

  • PDF

네트워크 기반 이동로봇에 대한 이득 스케줄러 제어 (Gain Scheduler Control for Networked Mobile Robot)

  • 윤상석;박기환
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 학술대회 논문집 정보 및 제어부문
    • /
    • pp.315-318
    • /
    • 2005
  • This paper characterizes the performance for a remote path tracking control of the mobile robot in IP network viamiddleware. The middleware is used to alleviate the effect of the delay time on a mobile robot path tracking in Network-Based Control environment. The middleware also can be implemented in a modular structure. Thus, a controller upgrade or modification for other types of network protocols or different control objectives can be achieved easily. A case study on a mobile robot path-tracking with IP network delays is described. The effectiveness of the proposed approach is verified by experimental results.

  • PDF

게인 스케줄러 구조의 교차 보상기를 사용한 변형 아라고시스템의 비결합 제어 (Decoupling Control of the Modified Arago System Using Cross Compensator with Gain Scheduler Structure)

  • 최군호
    • 반도체디스플레이기술학회지
    • /
    • 제19권4호
    • /
    • pp.105-111
    • /
    • 2020
  • In most multiple input/output systems, one input affects two or more different outputs. Therefore, there are many inconveniences in using the actual system. In order to solve this problem, a controller that makes an input signal and an output correspond 1:1 is called a decoupling controller. In this paper, I try to implement a relatively simple decoupling controller using a cross-compensator, that is, a compensator that takes an uncorresponding output as an input value. And this cross-compensator has a gain scheduler structure in order to increase the performance. In addition, this system is designed with a distributed control structure using CAN communication, so that it can be manufactured and operated in an easier way when implementing an actual experimental system. The proposed structure is applied to the modified new Arago's disk system and tested, and through this, the effectiveness is confirmed and reported.

In-wheel motor 차량의 yaw 안정성 향상을 위한 scheduler 설계 (Scheduler design for yaw stability improvement of in-wheel motor vehicle)

  • 한인재;김진성;권오신;허훈
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2011년도 춘계학술대회 논문집
    • /
    • pp.212-217
    • /
    • 2011
  • A scheduling technique for the improvement of yaw motion stability in in-wheel motor vehicle is proposed. Normally vehicle velocity is controlled via conventional PID method. When vehicle is encountered with different road conditions on left and right hand sides, unstable yaw motion is induced due to the driving force difference in both wheels. In this paper a scheduling formular for control gain is derived in terms of experimental results to generate proper counter control action. Simulation result reveals its effective performance in yaw control of in-wheel vehicle.

  • PDF

퍼지 게인스케듈링을 적용한 자동착륙 유도제어 알고리즘 설계 : 윈쉬어 환경에서의 착륙 (Design of Guidance and Control Algorithm for Autolanding In Windshear Environment Using Fuzzy Gain Scheduling)

  • 하철근;안상운
    • 제어로봇시스템학회논문지
    • /
    • 제14권1호
    • /
    • pp.95-103
    • /
    • 2008
  • This paper deals with the problem of autolanding for aircraft under windshear environment for which the landing trajectory is given. It is well known that the landing maneuver in windshear turbulence is very dangerous and hard for the pilot to control because windshear is unpredictable in when and where it happens and its aerodynamic characteristics are complicated. In order to accomplish satisfactory autolanding maneuver in this environment, we propose a gain-scheduled controller. The proposed controller consists of three parts: PID controller, called baseline controller, which is designed to satisfy requirements of stability and performance without considering windshear, gain scheduler based on fuzzy logic, and safety decision logic, which decides if the current autolanding maneuver needs to be aborted or not. The controller is applied to a 6-DOF simulation model of the associated airplane in order to illustrate the effectiveness of the proposed control algorithm. It is noted that a cross wind in the lateral direction is included to the simulation model. From the simulation results it is observed that the proposed gain scheduled controller shows superior performance than the case of controller without gain scheduling even in severe downburst and tailwind region of windshear. In addition, touchdown along centerline of the runway is more precise for the proposed controller than for the controller without gain scheduling in the cross wind and the tailwind.

Automatic Landing in Adaptive Gain Scheduled PID Control Law

  • Ha, Cheol-Keun;Ahn, Sang-Won
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.2345-2348
    • /
    • 2003
  • This paper deals with a problem of automatic landing guidance and control system design. The auto-landing control system for the longitudinal motion is designed in the classical PID controller. The controller gains are properly adapted to variation of the performance using fuzzy logic as a gain scheduler for the PID gains. This control logic is applied to the problem of the automatic landing control system design. From the numerical simulation using the 6DOF nonlinear model of the associated airplane, it is shown that the auto-landing maneuver is successfully achieved from the start of the flight conditions: 1500 ft altitude, 250 ft/sec airspeed and zero flight path angle.

  • PDF

퍼지 게인 스케쥴링을 이용한 CSTR의 온도 제어 (Temperature Control of a CSTR using Fuzzy Gain Scheduling)

  • 김종화;고강영;진강규
    • 제어로봇시스템학회논문지
    • /
    • 제19권9호
    • /
    • pp.839-845
    • /
    • 2013
  • A CSTR (Continuous Stirred Tank Reactor) is a highly nonlinear process with varying parameters during operation. Therefore, tuning of the controller and determining the transition policy of controller parameters are required to guarantee the best performance of the CSTR for overall operating regions. In this paper, a methodology employing the 2DOF (Two-Degree-of-Freedom) PID controller, the anti-windup technique and a fuzzy gain scheduler is presented for the temperature control of the CSTR. First, both a local model and an EA (Evolutionary Algorithm) are used to tune the optimal controller parameters at each operating region by minimizing the IAE (Integral of Absolute Error). Then, a set of controller parameters are expressed as functions of the gain scheduling variable. Those functions are implemented using a set of "if-then" fuzzy rules, which is of Sugeno's form. Simulation works for reference tracking, disturbance rejecting and noise rejecting performances show the feasibility of using the proposed method.

Longitudinal Automatic Landing in AdaptivePID Control Law Under Wind Shear Turbulence

  • Ha, Cheol-keun;Ahn, Sang-Won
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제5권1호
    • /
    • pp.30-38
    • /
    • 2004
  • This paper deals with a problem of automatic landing guidance and control ofthe longitudinal airplane motion under the wind shear turbulence. Adaptive gainscheduled PID control law is proposed in this paper. Fuzzy logic is the main part ofthe adaptive PID controller as gain scheduler. To illustrate the successful applicationof the proposed control law to the automatic landing control problem, numericalsimulation is carried out based on the longitudinal nonlinear airplane model excited bythe wind shear turbulence. The simulation results show that the automatic landingmaneuver is successfully achieved with the satisfactory performance and the gainadaptation of the control law is made adequately within the limited gains.