• Title/Summary/Keyword: Gain Optimization

Search Result 358, Processing Time 0.027 seconds

A Gain-Scheduled Autopilot Design for a Bank-To-Turn Missile Using LMI Optimization and Linear Interpolation

  • Shin, Myoung-Ho;Chung, Myung-Jin;Lee, Chiul-Hwa
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.48.3-48
    • /
    • 2001
  • A gain-scheduled autopilot design for a bank-to-turn (BTT) missile is developed by using the Linear Matrix Inequality (LMI) optimization technique and a state-space lineal interpolation method. The missile dynamics are brought to a quasilinear parameter varying (quasi-LPV) form. Robust linear control design method is used to obtain state feedback controllers for the LPV systems with exogenous disturbances at the frozen values of the scheduling parameters. Two gam-scheduled controllers for the pitch axis and the yaw/roll axis are constructed by linearly interpolating the robust state-feedback gains. The designed controller is applied to a nonlinear six-degree-of-freedom (6-DOF) simulations.

  • PDF

Design and Optimization of Four Element Triangular Dielectric Resonator Antenna using PSO Algorithm for Wireless Applications

  • Dasi swathi
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.10
    • /
    • pp.67-72
    • /
    • 2023
  • This paper portrays the design and optimization of a wideband four element triangular dielectric resonator antenna (TDRA) using PSO. The proposed antenna's radiation characteristics were extracted using Ansoft HFSS software. At a resonant frequency of 5-7 GHz, the four element antenna provides nearly 21 percent bandwidth and the optimized gives 5.82 dBi peak gain. The radiation patterns symmetry and uniformity are maintained throughout the operating bandwidth. for WLAN (IEEE 802.16) and WiMAX applications, the proposed antenna exhibits a consistent symmetric monopole type radiation pattern with low cross polarisation. The proposed antenna's performance was compared to that of other dielectric resonator antenna (DRA) shapes, and it was discovered that the TDRA uses a lot less radiation area to provide better performance than other DRA shapes and PSO optimized antenna increases the gain of the antenna

A Study on the Fast Converging Algorithm for LMS Adaptive Filter Design (LMS 적응 필터 설계를 위한 고속 수렴 알고리즘에 관한 연구)

  • 신연기;이종각
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.19 no.5
    • /
    • pp.12-19
    • /
    • 1982
  • In general the design methods of adaptive filter are divided into two categories, one is based upon the local parameter optimization theory and the other is based upon stability theory. Among the various design techniques, the LMS algorithm by steepest-descent method which is based upon local parameter optimization theory is used widely. In designing the adaptive filter, the most important factor is the convergence rate of the algorithm. In this paper a new algorithm is proposed to improve the convergence rate of adaptive firter compared with the commonly used LMS algorithm. The faster convergence rate is obtained by adjusting the adaptation gain of LMS algorithm. And various aspects of improvement of the adaptive filter characteristics are discussed in detail.

  • PDF

The Correlation Parameters and the Optimization of a PN Sequence Phase for Variable Spreading Gain (VSG) Multi-Rate DS/CDMA System (멀티레이트 서비스를 지원하는 VSG-DS/C음 시스템에서의 PN 시퀀스 상관 파라미터 특성과 최적화)

  • 이연우;김응배;차균현
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.25 no.1A
    • /
    • pp.10-17
    • /
    • 2000
  • In this paper, we evaluate the correlation properties and the optimization of PN sequence phase for multi-media DS/CDMA system with variable spreading gain (VSG) scheme. In multi-media multi-rate DS/CDMA systems, the optimization of PN sequence phase is not a tractable problem, since the sequences should be optimized against both sequences of the same length and other sequences with different length. Hence, we verify the correlation properties of PN sequence phase in multi-rate system environment and furthermore, we propose the new phase criterion, MIN-AIP (minimum-average interference parameter), to minimize the bit error rate (BER). As the results of performance evaluations, it is shown that the performance of MIN-AIP criteria gives the best results.

  • PDF

Approximation Algorithm for Multi Agents-Multi Tasks Assignment with Completion Probability (작업 완료 확률을 고려한 다수 에이전트-다수 작업 할당의 근사 알고리즘)

  • Kim, Gwang
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.27 no.2
    • /
    • pp.61-69
    • /
    • 2022
  • A multi-agent system is a system that aims at achieving the best-coordinated decision based on each agent's local decision. In this paper, we consider a multi agent-multi task assignment problem. Each agent is assigned to only one task and there is a completion probability for performing. The objective is to determine an assignment that maximizes the sum of the completion probabilities for all tasks. The problem, expressed as a non-linear objective function and combinatorial optimization, is NP-hard. It is necessary to design an effective and efficient solution methodology. This paper presents an approximation algorithm using submodularity, which means a marginal gain diminishing, and demonstrates the scalability and robustness of the algorithm in theoretical and experimental ways.

Optimization of LU-SGS Code for the Acceleration on the Modern Microprocessors

  • Jang, Keun-Jin;Kim, Jong-Kwan;Cho, Deok-Rae;Choi, Jeong-Yeol
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.14 no.2
    • /
    • pp.112-121
    • /
    • 2013
  • An approach for composing a performance optimized computational code is suggested for the latest microprocessors. The concept of the code optimization, termed localization, is maximizing the utilization of the second level cache that is common to all the latest computer systems, and minimizing the access to system main memory. In this study, the localized optimization of the LU-SGS (Lower-Upper Symmetric Gauss-Seidel) code for the solution of fluid dynamic equations was carried out in three different levels and tested for several different microprocessor architectures widely used these days. The test results of localized optimization showed a remarkable performance gain of more than two times faster solution than the baseline algorithm for producing exactly the same solution on the same computer system.

Robust Optimization of Caliper Brake Disc Considering Tolerance (설계변수 및 매개변수의 공차를 고려한 캘리퍼 디스크 브레이크의 강건설계)

  • Kim, Jong-Hun;Park, Jeong-Min;Lee, Jong-Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.6
    • /
    • pp.905-913
    • /
    • 2003
  • Generally, most of optimization have been performed with fixed sizes and variables. But, the optimum value considering tolerance of design variables and material properties, might be useless owing to exist in infeasible region. It is needed that the tolerance of design variables and material properties is considered for a real design problem. A deterministic optimal solution can be in the feasible region by performing robust optimization considering tolerance. In the paper, robust design is suggested to gain an optimum insensitive to variation of design variables and it is applied for optimization problem of caliper disc brakes for vehicles.

Hybrid Structural Control System Design Using Preference-Based Optimization (선호도 기반 최적화 방법을 사용한 복합 구조 제어 시스템 설계)

  • Park, Won-Suk;Park, Kwan-Soon;Koh, Hyun-Moo
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2006.03a
    • /
    • pp.401-408
    • /
    • 2006
  • An optimum design method for hybrid control systems is proposed in this study. By considering both active and passive control systems as a combined or a hybrid system, the optimization of the hybrid system can be achieved simultaneously. In the proposed approach, we consider design parameters of active control devices and the elements of the feedback gain matrix as design variables for the active control system. Required quantity of the added dampers are also treated as design variables for the passive control system. In the proposed method, the cost of both active and passive control devices, the required control efforts and dynamic responses of a target structure are selected as objective functions to be minimized. To effectively address the multi-objective optimization problem, we adopt a preference-based optimization model and apply a genetic algorithm as a numerical searching technique. As an example to verify the validity of the proposed optimization technique, a wind-excited 20-storey building with hybrid control systems is used and the results are presented.

  • PDF

Gain Scheduled State Feedback and Disturbance Feedforward Control for Systems with Bounded Control Input - Application (제어입력 크기제한을 갖는 시스템에서 이득 스케줄 상태되먹임-외란앞먹임 제어 - 적용)

  • Kang, Min-Sig;Yoon, Woo-Hyun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.12
    • /
    • pp.65-73
    • /
    • 2007
  • In this paper, the gain scheduled state feedback and disturbance feedforward control design proposed in the previous paper has been applied to a simple matching system and a turret stabilization system. In such systems, it is needed to attenuate disturbance response effectively as long as control input satisfies the given constraint on its magnitude. The scheduled control gains are derived in the framework of linear matrix inequality(LMI) optimization by means of the MatLab toolbox. Its effectiveness is verified along with the simulation results compared with the conventional optimum constant gain control and the scheduled state feedback control cases.

Design method of computer-generated controller for linear time-periodic systems

  • Jo, Jang-Hyen
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10b
    • /
    • pp.225-228
    • /
    • 1992
  • The purpose of this project is the presentation of new method for selection of a scalar control of linear time-periodic system. The approach has been proposed by Radziszewski and Zaleski [4] and utilizes the quadratic form of Lyapunov function. The system under consideration is assigned either in closed-loop state or in modal variables as in Calico, Wiesel [1]. The case of scalar control is considered, the gain matrix being assumed to be at worst periodic with the system period T, each element being represented by a Fourier series. As the optimal gain matrix we consider the matrix ensuring the minimum value of the larger real part of the two Poincare exponents of the system. The method, based on two-step optimization procedure, allows to find the approximate optimal gain matrix. At present state of art determination of the gain matrix for this case has been done by systematic numerical search procedure, at each step of which the Floquet solution must be found.

  • PDF