• 제목/요약/키워드: Gadolinia-doped ceria

검색결과 14건 처리시간 0.031초

Symmetrical Solid Oxide Electrolyzer Cells (SOECs) with La0.6Sr0.4Co0.2Fe0.8O3 (LSCF)-Gadolinium Doped Ceria (GDC) Composite Electrodes

  • Lee, Kyoung-Jin;Lee, Min-Jin;Park, Seok-hoon;Hwang, Hae-Jin
    • 한국세라믹학회지
    • /
    • 제53권5호
    • /
    • pp.489-493
    • /
    • 2016
  • Scandia ($Sc2O_3$)-stabilized zirconia (ScSZ) electrolyte-supported symmetrical solid oxide electrolyzer cells (SOECs), in which lanthanum strontium cobalt ferrite (LSCF)-gadolinia ($Gd_2O_3$)-doped ceria (GDC) composite materials are used as both the cathode and anode, were fabricated and their high temperature steam electrolysis (HTSE) performance was investigated. Current density-voltage curves were obtained for cells operated in 10% $H_2O$/90% Ar at 750, 800, and $850^{\circ}C$. It was possible to determine the ohmic, cathodic, and anodic contributions to the total overpotential using the three-electrode technique. The HTSE performance was significantly improved in the symmetrical cell with LSCF-GDC electrodes compared to the cell consisting of an Ni-YSZ cathode and LSCF-GDC anode. It was found that the overpotential due to the LSCF-GDC cathode largely decreased and, at a given current density, the total cell voltage decreased, which resulted in the enhanced hydrogen production rate in the symmetrical cell.

연소합성을 이용한 저온형 고체산화물 연료전지용 나노구조 세리아계 전해질 제조 (Synthesis of Nanocrystalline Ceria for IT-SOFC by Glycine Nitrate Combustion Process)

  • 조승환;김종호;김도경
    • 한국세라믹학회지
    • /
    • 제42권12호
    • /
    • pp.821-826
    • /
    • 2005
  • Gadolinia-doped ceria nanopowder was prepared by glycine-nitrate combustion method with different glycine/nitrate mixing ratio. The characteristics of the synthesized powder were investigated by X-ray diffraction method, transmission electron microscopy, thermal gravity, differential thermal analysis and thermo-mechanical analysis. The smallest powder was obtained with glycine/nitrate ratio 1.00 and the lowest organic and water vapor contained powder was made with glycine/nitrate ratio 1.75. According to dilatometry, fast densification was occurred around $1000^{\circ}C$ and shows full density over $1300^{\circ}C$. Finally near-fully dense ceria electrolyte was fabricated with conventional sintering technique. Glycine-nitrate process yields fine nanopowders which enable low temperature sintering and fabrication of fully dense and nanostructured oxide electrolyte.

Fabrication of a MnCo2O4/gadolinia-doped Ceria (GDC) Dual-phase Composite Membrane for Oxygen Separation

  • Yi, Eun-Jeong;Yoon, Mi-Young;Moon, Ji-Woong;Hwang, Hae-Jin
    • 한국세라믹학회지
    • /
    • 제47권2호
    • /
    • pp.199-204
    • /
    • 2010
  • A dual-phase ceramic membrane consisting of gadolinium-doped ceria (GDC) as an oxygen ion conducting phase and $MnCo_2O_4$ as an electron conducting phase was fabricated by sintering a GDC and $MnCo_2O_4$ powder mixture. The $MnCo_2O_4$ was found to maintain its spinel structure at temperatures lower than $1200^{\circ}C$. (Mn,Co)(Mn,Co)$O_4$ spinel, manganese and cobalt oxides formed in the sample sintered at $1300^{\circ}C$ in an air atmosphere. XRD analysis revealed that no reaction phases occurred between GDC and $MnCo_2O_4$ at $1200^{\circ}C$. The electrical conductivity did not exhibit a linear relationship with the $MnCo_2O_4$ content in the composite membranes, in accordance with percolation theory. It increased when more than 15 vol% of $MnCo_2O_4$ was added. The oxygen permeation fluxes of the composite membranes increased with increasing $MnCo_2O_4$ content and this can be explained by the increase in electrical conductivity. However, the oxygen permeation flux of the composite membranes appeared to be governed not only by electrical conductivity, but also by the microstructure, such as the grain size of the GDC matrix.

저온형 SOFC용 GDC 전해질 두께에 따른 Open Circuit Voltage 향상 (Improvement of Open Circuit Voltage (OCV) depending on Thickness of GDC Electrolyte of LT-SOFCs)

  • 고현준;이종진;현상훈
    • 한국세라믹학회지
    • /
    • 제47권2호
    • /
    • pp.195-198
    • /
    • 2010
  • It has been considered to apply GDC ($Gd_{0.1}Ce_{0.9}O_{1-X}$) for low-temperature SOFC electrolytes because it has higher ionic conductivity than YSZ at low temperature. However, open circuit voltage with using GDC ($Gd_{0.1}Ce_{0.9}O_{1-X}$) electrolyte in SOFCs, becomes lower than using YSZ (8 mol% Yttria stabilized Zirconia) electrolyte because GDC has electronic conductivity. In this work, the effect of changing GDC electrolyte thickness on the open circuit voltage has been investigated. Ni-GDC anode-supported unit cells were fabricated as follows. Mixed NiO-GDC powders were pressed and pre-sintered at $1200^{\circ}C$. And then, GDC electrolyte material was dip-coated on the anode and sintered at $1400^{\circ}C$. Finally the LSCF-GDC cathode material was screen-printed on the electrolyte and sintered at $1000^{\circ}C$. Electrolyte thickness was controlled by the number of dip-coating times. Open circuit voltage was measured depending on electrolyte thickness at $650^{\circ}C$ and found that the thicker GDC electrolyte was, the better OCV was.

Ce0.8Gd0.2O1.9 세라믹스의 소결거동과 전기적 특성에 미치는 Fe2O3의 첨가효과 (Effects of Fe2O3 Additions on Sintering Behavior and Electrical Property of Ce0.8Gd0.2O1.9 Ceramics)

  • 최광훈;이주신;최용규
    • 한국재료학회지
    • /
    • 제17권10호
    • /
    • pp.526-531
    • /
    • 2007
  • The sintering behavior and electrical property of $Ce_{0.8}Gd_{0.2}O_{1.9}$ ceramics were investigated with the iron oxide concentration ranging from 0 to 5 mol%. Both the sintered density and grain size were found to increase up to 2 mol% $Fe_2O_3$, and then to decrease with further additions. At a higher $Fe_2O_3$ content above 3 mol%, grain size decreased by a pinning effect induced by different shape grains. The electrical conductivity was also increased with increasing $Fe_2O_3$ content up to 2 mol%. Total conductivity of 2 mol% $Fe_2O_3-added$ specimen showed the maximum conductivity of $2{\times}10^{-2}{\Omega}{\cdot}cm^{-1}$ at $500^{\circ}C$. The addition of $Fe_2O_3$ was found to promote the sintering properties and electrical conductivities of $Gd_2O_3-dope\;CeO_2$.