Enhancement of grain-boundary conduction in gadolinia-doped ceria by the scavenging of highly resistive siliceous phase Yoon Ho Cho^a, Pyeong-Seok Cho^a, Doo Kang Kim^b, Hyun-Min Park^c, Doh-Yeon Kim^b, Jong-Heun Lee^{a,*} ^aDepartment of Materials Science and Engineering, Korea University, Seoul, Korea TEL: 82-2-3290-3282, FAX: 82-2-928-3584, E-mail: jongheun@korea.ac.kr ^bSchool of Materials Science and Engineering, Seoul National University, Seoul, Korea ^cNew Materials Evaluation Center, Korea Research Institute of Standards and Science, Taduk Science Town, Daejeon, Korea The MgO was suggested as a new scavenger material to mitigate the harmful effect of SiO₂ impurity on grain-boundary conduction in 10mol% gadolinia-doped ceria (GDC). The grain-boundary conduction of GDC specimen containing 500 ppm of SiO₂ impurity increased up to ~45 times by the addition of 0.3 - 10 mol% of MgO. The solubility limit of MgO to GDC was as low as ~0.1 mol% and the most of MgO existed as a second phase. From the electron energy-loss spectroscopic analysis, the formation of forsterite(Mg₂SiO₄) or magnesium silicate oxides by the reaction between MgO second phase and siliceous intergranular phase was suggested as a scavenging mechanism. *This work was supported by the Korea Research Foundation grant funded by the Korean Government (MOEHRD) (KRF-2005-041-D00361).