• Title/Summary/Keyword: Gabor filters

Search Result 42, Processing Time 0.02 seconds

Optimal Gabor Filters for Steganalysis of Content-Adaptive JPEG Steganography

  • Song, Xiaofeng;Liu, Fenlin;Chen, Liju;Yang, Chunfang;Luo, Xiangyang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.1
    • /
    • pp.552-569
    • /
    • 2017
  • The existing steganalysis method based on 2D Gabor filters can achieve a competitive detection performance for content-adaptive JPEG steganography. However, the feature dimensionality is still high and the time-consuming of feature extraction is relatively large because the optimal selection is not performed for 2D Gabor filters. To solve this problem, a new steganalysis method is proposed for content-adaptive JPEG steganography by selecting the optimal 2D Gabor filters. For the proposed method, the 2D Gabor filters with different parameter settings are generated first. Then, the feature is extracted by each 2D Gabor filter and the corresponding detection accuracy is used as the measure for filter selection. Next, some 2D Gabor filters are selected by a greedy strategy and the steganalysis feature is extracted by the selected filters. Last, the ensemble classifier is used to assemble the proposed steganalysis feature as well as the final steganalyzer. The experimental results show that the steganalysis feature extracted by the selected optimal 2D Gabor filters also can achieve a competitive detection performance while the feature dimensionality is reduced greatly.

Adaptive Processing for Feature Extraction: Application of Two-Dimensional Gabor Function

  • Lee, Dong-Cheon
    • Korean Journal of Remote Sensing
    • /
    • v.17 no.4
    • /
    • pp.319-334
    • /
    • 2001
  • Extracting primitives from imagery plays an important task in visual information processing since the primitives provide useful information about characteristics of the objects and patterns. The human visual system utilizes features without difficulty for image interpretation, scene analysis and object recognition. However, to extract and to analyze feature are difficult processing. The ultimate goal of digital image processing is to extract information and reconstruct objects automatically. The objective of this study is to develop robust method to achieve the goal of the image processing. In this study, an adaptive strategy was developed by implementing Gabor filters in order to extract feature information and to segment images. The Gabor filters are conceived as hypothetical structures of the retinal receptive fields in human vision system. Therefore, to develop a method which resembles the performance of human visual perception is possible using the Gabor filters. A method to compute appropriate parameters of the Gabor filters without human visual inspection is proposed. The entire framework is based on the theory of human visual perception. Digital images were used to evaluate the performance of the proposed strategy. The results show that the proposed adaptive approach improves performance of the Gabor filters for feature extraction and segmentation.

Global Feature Extraction and Recognition from Matrices of Gabor Feature Faces

  • Odoyo, Wilfred O.;Cho, Beom-Joon
    • Journal of information and communication convergence engineering
    • /
    • v.9 no.2
    • /
    • pp.207-211
    • /
    • 2011
  • This paper presents a method for facial feature representation and recognition from the Covariance Matrices of the Gabor-filtered images. Gabor filters are a very powerful tool for processing images that respond to different local orientations and wave numbers around points of interest, especially on the local features on the face. This is a very unique attribute needed to extract special features around the facial components like eyebrows, eyes, mouth and nose. The Covariance matrices computed on Gabor filtered faces are adopted as the feature representation for face recognition. Geodesic distance measure is used as a matching measure and is preferred for its global consistency over other methods. Geodesic measure takes into consideration the position of the data points in addition to the geometric structure of given face images. The proposed method is invariant and robust under rotation, pose, or boundary distortion. Tests run on random images and also on publicly available JAFFE and FRAV3D face recognition databases provide impressively high percentage of recognition.

A Gabor Cosine and Sine Transform (Gabor 코사인과 사인 변환)

  • Lee, Juck-Sik
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.39 no.4
    • /
    • pp.408-417
    • /
    • 2002
  • Gabor cosine and sine functions have widely been used to describe the human visual filters. This paper presents a new method to locally represent image frequency components using these functions. The parameters of basis functions are determined based on dc ripple and the sidelobe strength of step response. The resultant transform consisting of Gabor cosine and sine functions is compared with existing transforms by computing the joint effective width and by applying to the image reconstruction with the limited number of transformed coefficients. The experimental results show that the proposed transform has better performance than DGT and DCT.

Classification of Seabed Physiognomy Based on Side Scan Sonar Images

  • Sun, Ning;Shim, Tae-Bo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.26 no.3E
    • /
    • pp.104-110
    • /
    • 2007
  • As the exploration of the seabed is extended ever further, automated recognition and classification of sonar images become increasingly important. However, most of the methods ignore the directional information and its effect on the image textures produced. To deal with this problem, we apply 2D Gabor filters to extract the features of sonar images. The filters are designed with constrained parameters to reduce the complexity and to improve the calculation efficiency. Meanwhile, at each orientation, the optimal Gabor filter parameters will be selected with the help of bandwidth parameters based on the Fisher criterion. This method can overcome some disadvantages of the traditional approaches of extracting texture features, and improve the recognition rate effectively.

Pedestrian Detection Algorithm using a Gabor Filter Bank (Gabor Filter Bank를 이용한 보행자 검출 알고리즘)

  • Lee, Sewon;Jang, Jin-Won;Baek, Kwang-Ryul
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.9
    • /
    • pp.930-935
    • /
    • 2014
  • A Gabor filter is a linear filter used for edge detectionas frequency and orientation representations of Gabor filters are similar to those of the human visual system. In this thesis, we propose a pedestrian detection algorithm using a Gabor filter bank. In order to extract the features of the pedestrian, we use various image processing algorithms and data structure algorithms. First, color image segmentation is performed to consider the information of the RGB color space. Second, histogram equalization is performed to enhance the brightness of the input images. Third, convolution is performed between a Gabor filter bank and the enhanced images. Fourth, statistical values are calculated by using the integral image (summed area table) method. The calculated statistical values are used for the feature matrix of the pedestrian area. To evaluate the proposed algorithm, the INRIA pedestrian database and SVM (Support Vector Machine) are used, and we compare the proposed algorithm and the HOG (Histogram of Oriented Gradient) pedestrian detector, presentlyreferred to as the methodology of pedestrian detection algorithm. The experimental results show that the proposed algorithm is more accurate compared to the HOG pedestrian detector.

Iris Recognition Using the 2-D Gabor Filter (2-D Gabor 필터를 이용한 홍채인식)

  • Go, Hyoun-Joo;Lee, Dae-Jong;Chun, Myung-Geun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.13 no.6
    • /
    • pp.716-721
    • /
    • 2003
  • This paper deals with the iris recognition as one of biometric techniques which are applied to identify a person using his/her behavior or congenital characteristics. The iris of a human eye has a texture that is unique and time invariant for each individual. First, we obtain the feature vector from the 2D iris pattern having a property of size invariant and divide it into 24 sectors which are further through three types of 2D Gabor filters. At the recognition process, we compute the similarity measure based on the correlation values. Here, since we use three different matching values obtained from three different directional Gabor filters and select the maximum value among them, it is possible to minimize the recognition error rate. To show the usefulness of the proposed algorithm, we applied it to a biometric database consisting of 50 iris patterns extracted from 10 subjects and finally get more higher than 90% recognition rate.

Hierarchical Gabor Feature and Bayesian Network for Handwritten Digit Recognition (계층적인 가버 특징들과 베이지안 망을 이용한 필기체 숫자인식)

  • 성재모;방승양
    • Journal of KIISE:Software and Applications
    • /
    • v.31 no.1
    • /
    • pp.1-7
    • /
    • 2004
  • For the handwritten digit recognition, this paper Proposes a hierarchical Gator features extraction method and a Bayesian network for them. Proposed Gator features are able to represent hierarchically different level information and Bayesian network is constructed to represent hierarchically structured dependencies among these Gator features. In order to extract such features, we define Gabor filters level by level and choose optimal Gabor filters by using Fisher's Linear Discriminant measure. Hierarchical Gator features are extracted by optimal Gabor filters and represent more localized information in the lower level. Proposed methods were successfully applied to handwritten digit recognition with well-known naive Bayesian classifier, k-nearest neighbor classifier. and backpropagation neural network and showed good performance.

A Rotation Invariant Image Retrieval with Local Features

  • You, Hee-Jun;Shin, Dae-Kyu;Kim, Dong-Hoon;Kim, Hyun-Sool;Park, Sang-Hui
    • International Journal of Control, Automation, and Systems
    • /
    • v.1 no.3
    • /
    • pp.332-338
    • /
    • 2003
  • Content-based image retrieval is the research of images from database, that are visually similar to given image examples. Gabor functions and Gabor filters are regarded as excellent methods for feature extraction and texture segmentation. However, they have a disadvantage not to perform well in case of a rotated image because of its direction-oriented filter. This paper proposes a method of extracting local texture features from blocks with central interest points detected in an image and a rotation invariant Gabor wavelet filter. We also propose a method of comparing pattern histograms of features classified by VQ (Vector Quantization) among images.

Automatic Detection Method for Mura Defects on Display Films Using Morphological Image Processing and Labeling

  • Cho, Sung-Je;Lee, Seung-Ho
    • Journal of IKEEE
    • /
    • v.18 no.2
    • /
    • pp.234-239
    • /
    • 2014
  • This paper proposes a new automatic detection method to inspect mura defects on display film surface using morphological image processing and labeling. This automatic detection method for mura defects on display films comprises 3 phases of preprocessing with morphological image processing, Gabor filtering, and labeling. Since distorted results could be obtained with the presence of non-uniform illumination, preprocessing step reduces illumination components using morphological image processing. In Gabor filtering, mura images are created with binary coded mura components using Gabor filters. Subsequently, labeling is a final phase of finding the mura defect area using the difference between large mura defects and values in the periphery. To evaluate the accuracy of the proposed detection method, detection rate was assessed by applying the method in 200 display film samples. As a result, the detection rate was high at about 95.5%. Moreover, the study was able to acquire reliable results using the Semu index for luminance mura in image quality inspection.