• Title/Summary/Keyword: Gabor feature

Search Result 127, Processing Time 0.022 seconds

Fingerprint-Based Personal Authentication Using Directional Filter Bank (방향성 필터 뱅크를 이용한 지문 기반 개인 인증)

  • 박철현;오상근;김범수;원종운;송영철;이재준;박길흠
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.40 no.4
    • /
    • pp.256-265
    • /
    • 2003
  • To improve reliability and practicality, a fingerprint-based biometric system needs to be robust to rotations of an input fingerprint and the processing speed should be fast. Accordingly, this paper presents a new filterbank-based fingerprint feature extraction and matching method that is robust to diverse rotations and reasonably fast. The proposed method fast extracts fingerprint features using a directional filter bank, which effectively decomposes an image into several subband outputs Since matching is also performed rapidly based on the Euclidean distance between the corresponding feature vectors, the overall processing speed is so fast. To make the system robust to rotations, the proposed method generates a set of feature vectors considering various rotations of an input fingerprint and then matches these feature vectors with the enrolled single template feature vector. Experimental results demonstrated the high speed of the proposed method in feature extraction and matching, along with a comparable verification accuracy to that of other leading techniques.

A Study of Textured Image Segmentation using Phase Information (페이즈 정보를 이용한 텍스처 영상 분할 연구)

  • Oh, Suk
    • Journal of the Korea Society of Computer and Information
    • /
    • v.16 no.2
    • /
    • pp.249-256
    • /
    • 2011
  • Finding a new set of features representing textured images is one of the most important studies in textured image analysis. This is because it is impossible to construct a perfect set of features representing every textured image, and it is inevitable to choose some relevant features which are efficient to on-going image processing jobs. This paper intends to find relevant features which are efficient to textured image segmentation. In this regards, this paper presents a different method for the segmentation of textured images based on the Gabor filter. Gabor filter is known to be a very efficient and effective tool which represents human visual system for texture analysis. Filtering a real-valued input image by the Gabor filter results in complex-valued output data defined in the spatial frequency domain. This complex value, as usual, gives the module and the phase. This paper focused its attention on the phase information, rather than the module information. In fact, the module information is considered very useful at region analysis in texture, while the phase information was considered almost of no use. But this paper shows that the phase information can also be fully useful and effective at region analysis in texture, once a good method introduced. We now propose "phase derivated method", which is an efficient and effective way to compute the useful phase information directly from the filtered value. This new method reduces effectively computing burden and widen applicable textured images.

Channel Color Energy Feature Representing Color and Texture in Content-Based Image Retrieval (내용기반 영상검색에서 색과 질감을 나타내는 채널색에너지)

  • Jung Jae Woong;Kwon Tae Wan;Park Seop Hyeong
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.41 no.1
    • /
    • pp.21-28
    • /
    • 2004
  • In the field of content-based image retrieval, many numerical features have been proposed for representing visual image content such as color, torture, and shape. Because the features are assumed to be independent, each of them is extracted without ny consideration of the others. In this paper, we consider the relationship between color and texture and propose a new feature called CCE(channel color energy). Simulation results with natural images show that the proposed method outperforms the conventional regular weighted comparison method and SCFT(sequential chromatic Fourier transform)-based color torture method.

Three-Dimensional Shape Recognition and Classification Using Local Features of Model Views and Sparse Representation of Shape Descriptors

  • Kanaan, Hussein;Behrad, Alireza
    • Journal of Information Processing Systems
    • /
    • v.16 no.2
    • /
    • pp.343-359
    • /
    • 2020
  • In this paper, a new algorithm is proposed for three-dimensional (3D) shape recognition using local features of model views and its sparse representation. The algorithm starts with the normalization of 3D models and the extraction of 2D views from uniformly distributed viewpoints. Consequently, the 2D views are stacked over each other to from view cubes. The algorithm employs the descriptors of 3D local features in the view cubes after applying Gabor filters in various directions as the initial features for 3D shape recognition. In the training stage, we store some 3D local features to build the prototype dictionary of local features. To extract an intermediate feature vector, we measure the similarity between the local descriptors of a shape model and the local features of the prototype dictionary. We represent the intermediate feature vectors of 3D models in the sparse domain to obtain the final descriptors of the models. Finally, support vector machine classifiers are used to recognize the 3D models. Experimental results using the Princeton Shape Benchmark database showed the average recognition rate of 89.7% using 20 views. We compared the proposed approach with state-of-the-art approaches and the results showed the effectiveness of the proposed algorithm.

Finger Vein Recognition Using Generalized Local Line Binary Pattern

  • Lu, Yu;Yoon, Sook;Xie, Shan Juan;Yang, Jucheng;Wang, Zhihui;Park, Dong Sun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.5
    • /
    • pp.1766-1784
    • /
    • 2014
  • Finger vein images contain rich oriented features. Local line binary pattern (LLBP) is a good oriented feature representation method extended from local binary pattern (LBP), but it is limited in that it can only extract horizontal and vertical line patterns, so effective information in an image may not be exploited and fully utilized. In this paper, an orientation-selectable LLBP method, called generalized local line binary pattern (GLLBP), is proposed for finger vein recognition. GLLBP extends LLBP for line pattern extraction into any orientation. To effectually improve the matching accuracy, the soft power metric is employed to calculate the matching score. Furthermore, to fully utilize the oriented features in an image, the matching scores from the line patterns with the best discriminative ability are fused using the Hamacher rule to achieve the final matching score for the last recognition. Experimental results on our database, MMCBNU_6000, show that the proposed method performs much better than state-of-the-art algorithms that use the oriented features and local features, such as LBP, LLBP, Gabor filter, steerable filter and local direction code (LDC).

A Fast Iris Feature Extraction Method For Embedded System (Embedded 시스템을 위한 고속의 홍채특징 추출 방법)

  • Choi, Chang-Soo;Min, Man-Gi;Jun, Byoung-Min
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.1
    • /
    • pp.128-134
    • /
    • 2009
  • Iris recognition is a biometric technology which can identify a person using the iris pattern. Recently, using iris information is used in many fields such as access control and information security. But Perform complex operations to extract features of the iris. because High-end hardware for real-time iris recognition is required. This paper is appropriate for the embedded environment using local gradient histogram embedded system using iris feature extraction methods have implement. Experimental results show that the performance of proposed method is comparable to existing methods using Gabor transform noticeably improves recognition performance and it is noted that the processing time of the local gradient histogram transform is much faster than that of the existing method and rotation was also a strong attribute.

Local Context based Feature Extraction for Efficient Face Detection (효율적인 얼굴 검출을 위한 지역적 켄텍스트 기반의 특징 추출)

  • Rhee, Phill-Kyu;Xu, Yong Zhe;Shin, Hak-Chul;Shen, Yan
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.11 no.1
    • /
    • pp.185-191
    • /
    • 2011
  • Recently, the surveillance system is highly being attention. Various Technologies as detecting object from image than determining and recognizing if the object are person are universally being used. Therefore, In this paper shows detecting on this kind of object and local context based facial feather detection algorithm is being advocated. Detect using Gabor Bunch in the same time Bayesian detection method for revision to find feather point is being described. The entire system to search for object area from image, context-based face detection, feature extraction methods applied to improve the performance of the system.

Smart Card User Identification Using Low-sized Face Feature Information (경량화된 얼굴 특징 정보를 이용한 스마트 카드 사용자 인증)

  • Park, Jian;Cho, Seongwon;Chung, Sun-Tae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.24 no.4
    • /
    • pp.349-354
    • /
    • 2014
  • PIN(Personal Identification Number)-based identification method has been used to identify the user of smart cards. However, this type of identification method has several problems. Firstly, PIN can be forgotten by owners of the card. Secondly, PIN can be used by others illegally. Furthermore, the possibility of hacking PIN can be high because this PIN type matching process is performed on terminal. Thus, in this paper we suggest a new identification method which is performed on smart card using face feature information. The proposed identification method uses low-sized face feature vectors and simple matching algorithm in order to get around the limits in computing capability and memory size of smart card.

The Object Image Detection Method using statistical properties (통계적 특성에 의한 객체 영상 검출방안)

  • Kim, Ji-hong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.7
    • /
    • pp.956-962
    • /
    • 2018
  • As the study of the object feature detection from image, we explain methods to identify the species of the tree in forest using the picture taken from dron. Generally there are three kinds of methods, which are GLCM (Gray Level Co-occurrence Matrix) and Gabor filters, in order to extract the object features. We proposed the object extraction method using the statistical properties of trees in this research because of the similarity of the leaves. After we extract the sample images from the original images, we detect the objects using cross correlation techniques between the original image and sample images. Through this experiment, we realized the mean value and standard deviation of the sample images is very important factor to identify the object. The analysis of the color component of the RGB model and HSV model is also used to identify the object.

A Survey on Deep Learning based Face Recognition for User Authentication (사용자 인증을 위한 딥러닝 기반 얼굴인식 기술 동향)

  • Mun, Hyung-Jin;Kim, Gea-Hee
    • Journal of Industrial Convergence
    • /
    • v.17 no.3
    • /
    • pp.23-29
    • /
    • 2019
  • Object recognition distinguish objects which are different from each other. But Face recognition distinguishes Identity of Faces with Similar Patterns. Feature extraction algorithm such as LBP, HOG, Gabor is being replaced with Deep Learning. As the technology that identify individual face with machine learning using Deep Learning Technology is developing, The Face Recognition Technology is being used in various field. In particular, the technology can provide individual and detailed service by being used in various offline environments requiring user identification, such as Smart Mirror. Face Recognition Technology can be developed as the technology that authenticate user easily by device like Smart Mirror and provide service authenticated user. In this paper, we present investigation about Face Recognition among various techniques for user authentication and analysis of Python source case of Face recognition and possibility of various service using Face Recognition Technology.