• Title/Summary/Keyword: GaN surface

Search Result 347, Processing Time 0.033 seconds

GaN Epitaxy with PA-MBE on HF Cleaned Cobalt-silicide Buffer Layer (HF 크리닝 처리한 코발트실리사이드 버퍼층 위에 PA-MBE로 성장시킨 GaN의 에피택시)

  • Ha, Jun-Seok;Chang, Ji-Ho;Song, Oh-Sung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.2
    • /
    • pp.409-413
    • /
    • 2010
  • We fabricated 10 nm-thick cobalt silicide($CoSi_2$) as a buffer layer on a p-type Si(100) substrate to investigate the possibility of GaN epitaxial growth on $CoSi_2/Si(100)$ substrates. We deposited 500 nm-GaN on the cobalt silicide buffer layer at low temperature with a PA-MBE (plasma assisted-molecular beam epitaxy) after the $CoSi_2/Si$ substrates were cleaned by HF solution. An optical microscopy, AFM, TEM, and HR-XRD (high resolution X-ray diffractometer) were employed to determine the GaN epitaxy. For the GaN samples without HF cleaning, they showed no GaN epitaxial growth. For the GaN samples with HF cleaning, they showed $4\;{\mu}m$-thick GaN epitaxial growth due to surface etching of the silicide layers. Through XRD $\omega$-scan of GaN <0002> direction, we confirmed the cyrstallinity of GaN epitaxy is $2.7^{\circ}$ which is comparable with that of sapphire substrate. Our result implied that $CoSi_2/Si(100)$ substrate would be a good buffer and substrate for GaN epitaxial growth.

Magnetized inductively coupled plasma etching of GaN in $Cl_2/BCl_3$ plasmas

  • Lee, Y.H.;Sung, Y.J.;Yeom, G.Y.
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 1999.10a
    • /
    • pp.49-49
    • /
    • 1999
  • In this study, $Cl_2/BCI_3$ magnetized inductively coupled plasmas (MICP) were used to etch GaN and the effects of magnetic confinements of inductively coupled plasmas on the GaN etch characteristics were investigated as a function of $Cl_2/BCI_3$. Also, the effects of Kr addition to the magnetized $Cl_2/BCI_3$ plasmas on the GaN etch rates were investigated. The characteristics of the plasmas were estimated using a Langmuir probe and quadrupole ma~s spectrometry (QMS). Etched GaN profiles were observed using scanning electron microscopy (SEM). The small addition of $Cl_2/BCI_3$ (10-20%) in $Cl_2$ increased GaN etch rates for both with and without the magnetic confinements. The application of magnetic confinements to the $Cl_2/BCI_3$ inductively coupled plasmas (ICP) increased GaN etch rates and changed the $Cl_2/BCI_3$ gas composition of the peak GaN etch rate from 10% $BCI_3$ to 20% $BCI_3$. It also increased the etch selectivity over photoresist, while slightly reducing the selectivity over $Si0_2$. The application of the magnetic field significantly increased positive $BCI_2{\;}^+$ measured by QMS and total ion saturation current measured by the Langmuir probe. Other species such as CI, BCI, and CI+ were increased while species such as $BCl_2$ and $BCI_3$ were decreased with the application of the magnetic field. Therefore, it appears that the increase of GaN etch rate in our experiment is related to the increased dissociative ionization of $BCI_3$ by the application of the magnetic field. The addition of 10% Kr in an optimized $Cl_2/BCI_3$ condition (80% $Cl_2/$ 20% $BCI_3$) with the magnets increased the GaN etch rate about 60%. More anisotropic GaN etch profile was obtained with the application of the magnetic field and a vertical GaN etch profile could be obtained with the addition of 10% Kr in an optimized $Cl_2/BCI_3$ condition with the magnets.

  • PDF

GaN Film Growth Characteristics Comparison in according to the Type of Buffer Layers on PSS (PSS 상 버퍼층 종류에 따른 GaN 박막 성장 특성 비교)

  • Lee, Chang-Min;Kang, Byung Hoon;Kim, Dae-Sik;Byun, Dongjin
    • Korean Journal of Materials Research
    • /
    • v.24 no.12
    • /
    • pp.645-651
    • /
    • 2014
  • GaN is most commonly used to make LED elements. But, due to differences of the thermal expansion coefficient and lattice mismatch with sapphire, dislocations have occurred at about $109{\sim}1010/cm^2$. Generally, a low temperature GaN buffer layer is used between the GaN layer and the sapphire substrate in order to reduce the dislocation density and improve the characteristics of the thin film, and thus to increase the efficiency of the LED. Further, patterned sapphire substrate (PSS) are applied to improve the light extraction efficiency. In this experiment, using an AlN buffer layer on PSS in place of the GaN buffer layer that is used mainly to improve the properties of the GaN film, light extraction efficiency and overall properties of the thin film are improved at the same time. The AlN buffer layer was deposited by using a sputter and the AlN buffer layer thickness was determined to be 25 nm through XRD analysis after growing the GaN film at $1070^{\circ}C$ on the AlN buffer CPSS (C-plane Patterned Sapphire Substrate, AlN buffer 25 nm, 100 nm, 200 nm, 300 nm). The GaN film layer formed by applying a 2 step epitaxial lateral overgrowth (ELOG) process, and by changing temperatures ($1020{\sim}1070^{\circ}C$) and pressures (85~300 Torr). To confirm the surface morphology, we used SEM, AFM, and optical microscopy. To analyze the properties (dislocation density and crystallinity) of a thin film, we used HR-XRD and Cathodoluminescence.

A study on the characteristics and crystal growth of GaSb (GaSb결정 성장과 특성에 관한 연구)

  • 이재구;오장섭;정성훈;송복식;문동찬;김선태
    • Electrical & Electronic Materials
    • /
    • v.9 no.9
    • /
    • pp.885-890
    • /
    • 1996
  • Undoped p-type and Te doped n-type GaSb crystals were grown by the vertical Bridgman method. The lattice constant of the GaSb crystals was 6.096.+-.000373.angs.. The carrier concentration, the resistivity, and the carrier mobility measured by the van der Pauw method were p.iden.8*10$^{16}$ c $m^{-3}$ , .rho..iden.0.20 .ohm.-cm, .mu.$_{p}$ .iden.400c $m^{2}$ $V^{-1}$ se $c^{-1}$ for p-type, n.iden.1*10$^{17}$ c $m^{-3}$ , .rho..iden.0.15 .ohm.-cm, .mu.$_{n}$ .iden.500c $m^{2}$ $V^{-1}$ se $c^{-1}$ for n-type at 300K. In case of treatment with metal ion of R $u^{+3}$, P $t^{+4}$, the carrier concentration, resistivity and carrier mobility of the GaSb crystals were p.iden.2*10$^{17}$ c $m^{-3}$ , .rho..iden.0.08.ohm.-cm, .mu.$_{p}$ .iden.420c $m^{2}$ $V^{-1}$ se $c^{-1}$ for p-type, n.iden.2.5*10$^{17}$ c $m^{-3}$ , .rho..iden.0.07.ohm.-cm, .mu.$_{n}$ .iden.520c $m^{2}$ $V^{-1}$ se $c^{-1}$ for n-type respectively. GaSb crystals had a tendency to lower resistivity and higher mobility, for surface treatment with metal ion effectively diminished surface recombination centers.s.

  • PDF

Development of a 3 kW Grid-tied PV Inverter With GaN HEMT Considering Thermal Considerations (GaN HEMT를 적용한 3kW급 계통연계 태양광 인버터의 방열 설계 및 개발)

  • Han, Seok-Gyu;Noh, Yong-Su;Hyon, Byong-Jo;Park, Joon-Sung;Joo, Dongmyoung
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.26 no.5
    • /
    • pp.325-333
    • /
    • 2021
  • A 3 kW grid-tied PV inverter with Gallium nitride high-electron mobility transistor (GaN HEMT) for domestic commercialization was developed using boost converter and full-bridge inverter with LCL filter topology. Recently, many GaN HEMTs are manufactured as surface mount packages because of their lower parasitic inductance characteristic than standard TO (transistor outline) packages. A surface mount packaged GaN HEMT releases heat through either top or bottom cooling method. IGOT60R070D1 is selected as a key power semiconductor because it has a top cooling method and fairly low thermal resistances from junction to ambient. Its characteristics allow the design of a 3 kW inverter without forced convection, thereby providing great advantages in terms of easy maintenance and high reliability. 1EDF5673K is selected as a gate driver because its driving current and negative voltage output characteristics are highly optimized for IGOT60R070D1. An LCL filter with passive damping resistor is applied to attenuate the switching frequency harmonics to the grid-tied operation. The designed LCL filter parameters are validated with PSIM simulation. A prototype of 3 kW PV inverter with GaN HEMT is constructed to verify the performance of the power conversion system. It achieved high power density of 614 W/L and peak power efficiency of 99% for the boost converter and inverter.

GaN 위에 electron beam evaporator로 증착시킨 ITO contactd의 구조적 특성 및 전기적 특성 평가

  • 김동우;성연준;이재원;박용조;김태일;김현수;염근영
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2000.02a
    • /
    • pp.33-33
    • /
    • 2000
  • 일반적으로 GaN-based light emitting diodes(LEDs)는 Top layer위에 금속박막으로 contact을 형성하고 있으며 광소자 구성에 있어 빛은 이러한 금속 contact을 통과할 수 없다. 그러나 만약 이러한 contact이 투명전도막으로 구성될 수 있다면 보다 효율적인 광소자의 구성이 기대되어진다. 특히 GaN photodetector, GaN-based LEDs, GaN vertical cavity surface emitting lasers(VCSELs)등의 소자형성에 있어 투명전도막 contact은 매우 중요하며 그 응용에 앞서 기본적인 구조적, 전기적, 광학적 특성에 대한 연구가 반드시 선행되어져야 한다. 따라서 본 실험에서는 이러한 투명전도막으로써 Indium Tin Oxide(ITO)를 사용하였으며 박막형태의 contact으로 제조하여 n-GaN, p-GaN와 corning glass위에 e-beam evaporation법로써 제조하였다. 또한 각 n-, p-type과 corning glass위에 증착된 ITO박막의 구조적 특성을 분석하기 위하여 x-ray diffractometry(XRD)와 Auger electron spectroscopy(AES)등을 사용하였으며 전기적 특성을 측정하기 위하여 four point probe를 사용하였고 그들의 I-V 곡선을 측정하였다. 또한 UV spectrometry를 사용하여 그들의 광학적 특성을 측정하고자 하였다. ITO 박막의 제조에 있어 기판은 초음파 유기세정 후 HCl과 H2O2(1:1)의 혼합용액을 사용하여 GaO2를 제거하고자 하였으며 이후 초순수로 세척하여 사용하였다. 초기 진공도는 3$\times$10-5 Torr이하였으며 기판온도 50$0^{\circ}C$에서 0.6 /s의 증착속도로 약 2000 증착하였다. 이렇게 제조된 ITO 박막은 5$\times$10-5 Torr이하의 진공분위기에서 $600^{\circ}C$로 열처리를 실시하였으며 열처리 시간의 변화에 따른 그들의 전기적, 구조적, 광학적 특성을 측정하였다. 열처리 과정을 통한 ITO박막은 투과도는 420nm의 영역에서 80%이상을 나타내었으며 이때의 면저항은 약 50ohm/ 이었다. 또한 I-V 곡선 측정에 의한 contact특성의 측정결과 열처리 전의 ITO contact은 n-GaN와 n-GaN에 대해 각각 ohmic과 schottky contact의 일반적인 contact 특성을 나타내었다. 그러나 이러한 contact 특성은 열처리 시간의 변화에 따라 변화하는 것을 확인할 수 있었다.

  • PDF

Asymmetric Metal-Semiconductor-Metal Al0.24Ga0.76N UV Sensors with Surface Passivation Effect Under Local Joule Heating

  • Byeong-Jun Park;Sung-Ho Hahm
    • Journal of Sensor Science and Technology
    • /
    • v.32 no.6
    • /
    • pp.425-431
    • /
    • 2023
  • An asymmetric metal-semiconductor-metal Al0.24Ga0.76N ultraviolet (UV) sensor was fabricated, and the effects of local Joule heating were investigated. After dielectric breakdown, the current density under a reverse bias of 2.0 V was 1.1×10-9 A/cm2, significantly lower than 1.2×10-8 A/cm2 before dielectric breakdown; moreover, the Schottky behavior of the Ti/Al/Ni/Au electrode changed to ohmic behavior under forward bias. The UV-to-visible rejection ratio (UVRR) under a reverse bias of 7.0 V before dielectric breakdown was 87; however, this UVRR significantly increased to 578, in addition to providing highly reliable responsivity. Transmission electron microscopy revealed interdiffusion between adjacent layers, with nitrogen vacancies possibly formed owing to local Joule heating at the AlGaN/Ti/Al/Ni/Au interfaces. X-ray photoelectron microscopy results revealed decreases in the peak intensities of the O 1s binding energies associated with the Ga-O bond and OH-, which act as electron-trapping states on the AlGaN surface. The reduction in dark current owing to the proposed local heating method is expected to increase the sensing performance of UV optoelectronic integrated devices, such as active-pixel UV image sensors.

Optical and Structural Properties of GaN Grown on AlN/Si via Molecular Beam Epitaxy Using Ammonia (암모니아를 이용하여 분자선에피탁시 방법으로 AIN/Si 기판에 성장시킨 GaN의 구조적,광학적 특성)

  • Kim, Gyeong-Hyeon;Hong, Seong-Ui;Gang, Seok-Jun;Lee, Sang-Hyeon;Kim, Chang-Su;Kim, Do-Jin;Han, Gi-Pyeong;Baek, Mun-Cheol
    • Korean Journal of Materials Research
    • /
    • v.12 no.5
    • /
    • pp.387-390
    • /
    • 2002
  • A new approach of using double buffer layers of AlN and GaN for growth of GaN films on Si has been undertaken via molecular beam epitaxy using ammonia. The first buffers layer of AlN was grown using $N_2$plasma and the second of GaN was grown using ammonia. The surface roughness of the grown films was investigated by atomic force microscope and was compared with the normally grown films on sapphire. Double crystal x-ray rocking curve and low temperature photoluminescence techniques were employed for structural and optical properties examination. Donor bound exciton peak at 3.481 eV with full width half maximum of 41 meV was observed at 13K.

Characteristics of a Blue Light Emitting Diode with In$_{x}$Ga$_{1-x}$N MQW Structure Grwon by MOCVD (MOCVD로 성장된 In$_{x}$Ga$_{1-x}$N MQW 구조의 청색 발광당이오드의 특성)

  • 이숙헌;배성범;태흥식;이승하;함성호;이용현;이정희
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.35D no.8
    • /
    • pp.24-30
    • /
    • 1998
  • A blue LED of $In_{x}Ga_{1-x}N$ multiple quantum well structure which had the blue emission spectrum of donor-acceptor pair transition generated form Si-Zn co-doped $In_{x}Ga_{1-x}N$ active layer, was fabricated. The $In_{x}Ga_{1-x}N$ MQW heterojunction LED structure was grown by MOCVD on the sapphire substrate with (0001) surface orientation at 800.deg. C. The fabricated LED exhibited forward cut-in voltage of 4~4.5V and reverse breakdown voltage of -13V. Its optical chracteristics showed that the center wavelength of peak emission occurred at 460nm and the optical intensity was increased linearly with respect to the injected electrical current above 5mA.

  • PDF

380-nm Ultraviolet Light-Emitting Diodes with InGaN/AlGaN MQW Structure

  • Bae, Sung-Bum;Kim, Sung-Bok;Kim, Dong-Churl;Nam, Eun Soo;Lim, Sung-Mook;Son, Jeong-Hwan;Jo, Yi-Sang
    • ETRI Journal
    • /
    • v.35 no.4
    • /
    • pp.566-570
    • /
    • 2013
  • In this paper, we demonstrate the capabilities of 380-nm ultraviolet (UV) light-emitting diodes (LEDs) using metal organic chemical vapor deposition. The epi-structure of these LEDs consists of InGaN/AlGaN multiple quantum wells on a patterned sapphire substrate, and the devices are fabricated using a conventional LED process. The LEDs are packaged with a type of surface mount device with Al-metal. A UV LED can emit light at 383.3 nm, and its maximum output power is 118.4 mW at 350 mA.