• Title/Summary/Keyword: GaN bulk substrate

Search Result 13, Processing Time 0.019 seconds

Growth features and nucleation mechanism of Ga1-x-yInxAlyN material system on GaN substrate

  • Simonyan, Arpine K.;Gambaryan, Karen M.;Aroutiounian, Vladimir M.
    • Advances in nano research
    • /
    • v.5 no.4
    • /
    • pp.303-311
    • /
    • 2017
  • The continuum elasticity model is applied to investigate quantitatively the growth features and nucleation mechanism of quantum dots, nanopits, and joint QDs-nanopits structures in GaInAlN quasyternary systems. We have shown that for GaInAlN material system at the critical strain of ${\varepsilon}^*=0.039$ the sign of critical energy and volume is changed. We assume that at ${\varepsilon}={\varepsilon}^*$ the mechanism of the nucleation is changed from the growth of quantum dots to the nucleation of nanopits. Obviously, at small misfit (${\varepsilon}$ < ${\varepsilon}^*$), the bulk nucleation mechanism dominates. However, at ${\varepsilon}$ > ${\varepsilon}^*$, when the energy barrier becomes negative as well as a larger misfit provides a low-barrier path for the formation of dislocations, the nucleation of pits becomes energetically preferable. The free energy of mixing for $Ga_{1-x-y}In_xAl_yN$ quasiternary system was calculated and studied and its 3D sketch was plotted.

Nano-scale Patterning on Diamond substrates using an FIB (FIB를 이용한 다이아몬드 기판 위의 나노급 미세 패턴의 형상 가공)

  • Song, Oh-Sung;Kim, Jong-Ryul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.7 no.6
    • /
    • pp.1047-1055
    • /
    • 2006
  • We patterned nano-width lines on a super hard bulk diamond substrate by varying the ion beam current and ion beam sources with a dual beam field ion beam (FIB). In addition, we successfully fabricated two-dimensional nano patterns and three-dimensional nano plate modules. We prepared nano lines on a diamond and a silicon substrate at the beam condition of 30 kV, 10 pA $\sim$ 5 nA with $Ga^+$ ion and $H_2O$ assisted ion sources. We measured each of the line-width, line-depth, etched line profiles, etch rate, and aspect ratio, and then compared them. We confirmed that nano patterning was possible on both a bulk diamond and a silicon substrate. The etch rate of $H_2O$ source can be enhanced about two times than that of Ga source. The width of patterns on a diamond was smaller than that on a silicon substrate at the same ion beam power The sub-100 nm patterns on a diamond were made under the charge neutralization mode to prevent charge accumulation. We successfully made a two-dimensional, 240 nm-width text of the 300-lettered Lord's Prayer on a gem diamond with 30 kV-30 pA FIB. The patterned text image was readable with a scanning electron microscope. Moreover, three dimensional nano-thick plate module fabrication was made successfully with an FIB and a platinum deposition, and electron energy loss spectrum (EELS) analysis was easily performed with the prepared nano plate module.

  • PDF

Analysis Trap and Device Characteristic of Silicon-Al2O3-Nitride-Oxide-Silicon Memory Cell Transistors using Charge Pumping Method (Charge Pumping Method를 이용한 Silicon-Al2O3-Nitride-Oxide-Silicon Flash Memory Cell Transistor의 트랩과 소자)

  • Park, Sung-Soo;Choi, Won-Ho;Han, In-Shik;Na, Min-Gi;Lee, Ga-Won
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.45 no.7
    • /
    • pp.37-43
    • /
    • 2008
  • In this paper, the dependence of electrical characteristics of Silicon-$Al_2O_3$-Nitride-Oxide-Silicon (SANOS) memory cell transistors and program/erase (P/E) speed, reliability of memory device on interface trap between Si substrate and tunneling oxide and bulk trap in nitride layer were investigated using charge pumping method which has advantage of simple and versatile technique. We analyzed different SANOS memory devices that were fabricated by the identical processing in a single lot except the deposition method of the charge trapping layer, nitride. In the case of P/E speed, it was shown that P/E speed is slower in the SANOS cell transistors with larger capture cross section and interface trap density by charge blocking effect, which is confirmed by simulation results. However, the data retention characteristics show much less dependence on interface trap. The data retention was deteriorated as increasing P/E cycling number but not coincides with interface trap increasing tendency. This result once again confirmed that interface trap independence on data retention. And the result on different program method shows that HCI program method more degraded by locally trapping. So, we know as a result of experiment that analysis the SANOS Flash memory characteristic using charge pumping method reflect the device performance related to interface and bulk trap.