• Title/Summary/Keyword: GaAs substrate

Search Result 638, Processing Time 0.026 seconds

Growth of GaN on ZnO Substrate by Hydride Vapor-Phase Epitaxy (ZnO 기판 위에 Hydride Vapor-Phase Epitaxy법에 의한 GaN의 성장)

  • Jo, Seong-Ryong;Kim, Seon-Tae
    • Korean Journal of Materials Research
    • /
    • v.12 no.4
    • /
    • pp.304-307
    • /
    • 2002
  • A zinc oxide (ZnO) single crystal was used as a substrate in the hydride vapor-phase epitaxy (HVPE) growth of GaN and the structural and optical properties of GaN layer were characterized by x- ray diffraction, transmission electron microscopy, secondary ion mass spectrometry, and photoluminescence (PL) analysis. Despite a good lattice match and an identical structure, ZnO is not an appropriate substrate for application of HVPE growth of GaN. Thick film could not be grown. The substrate reacted with process gases and Ga, being unstable at high temperatures. The crystallinity of ZnO substrate deteriorated seriously with growth time, and a thin alloy layer formed at the growth interface due to the reaction between ZnO and GaN. The PL from a GaN layer demonstrated the impurity contamination during growth possibly due to the out-diffusion from the substrate.

Ge Crystal Growth on Si Substrate for GaAs/Ge/Si Structure by Plasma-Asisted Epitaxy (GaAs/Ge/Si 구조를 위하여 PAE법을 이용한 Si 기판위에 Ge결정성장)

  • 박상준;박명기;최시영
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.26 no.11
    • /
    • pp.1672-1678
    • /
    • 1989
  • Major problems preventing the device-quality GaAs/Si heterostructure are the lattice mismatch of about 4% and difference in thermal expansion coefficient by a factor of 2.64 between Si and GaAs. Ge is a good candidate for the buffer layer because its lattice parameter and thermal expansion coefficient are almost the same as those of GaAs. As a first step toward developing heterostructure such as GaAs/Ge/Si entirely by a home-built PAE (plasma-assisted epitaxy), Ge films have been deposited on p-type Si (100)substrate by the plasma assisted evaporation of solid Ge source. The characteristics of these Ge/Si heterostructure were determined by X-ray diffraction, SEM and Auge electron spectroscope. PAE system has been successfully applied to quality-good Ge layer on Si substrate at relatively low temperature. Furthermore, this system can remove the native oxide(SiO2) on Si substrate with in-situ cleaning procedure. Ge layer grown on Si substrate by PAE at substrate temperature of 450\ulcorner in hydrogen partial pressure of 10mTorr was expected with a good buffer layer for GaAs/Ge/Si heterostructure.

  • PDF

Simulated Optimum Substrate Thicknesses for the BC-BJ Si and GaAs Solar Cells

  • Choe, Kwang-Su
    • Korean Journal of Materials Research
    • /
    • v.22 no.9
    • /
    • pp.450-453
    • /
    • 2012
  • In crystalline solar cells, the substrate itself constitutes a large portion of the fabrication cost as it is derived from semiconductor ingots grown in costly high temperature processes. Thinner wafer substrates allow some cost saving as more wafers can be sliced from a given ingot, although technological limitations in slicing or sawing of wafers off an ingot, as well as the physical strength of the sliced wafers, put a lower limit on the substrate thickness. Complementary to these economical and techno-physical points of view, a device operation point of view of the substrate thickness would be useful. With this in mind, BC-BJ Si and GaAs solar cells are compared one to one by means of the Medici device simulation, with a particular emphasis on the substrate thickness. Under ideal conditions of 0.6 ${\mu}m$ photons entering the 10 ${\mu}m$-wide BC-BJ solar cells at the normal incident angle (${\theta}=90^{\circ}$), GaAs is about 2.3 times more efficient than Si in terms of peak cell power output: 42.3 $mW{\cdot}cm^{-2}$ vs. 18.2 $mW{\cdot}cm^{-2}$. This strong performance of GaAs, though only under ideal conditions, gives a strong indication that this material could stand competitively against Si, despite its known high material and process costs. Within the limitation of the minority carrier recombination lifetime value of $5{\times}10^{-5}$ sec used in the device simulation, the solar cell power is known to be only weakly dependent on the substrate thickness, particularly under about 100 ${\mu}m$, for both Si and GaAs. Though the optimum substrate thickness is about 100 ${\mu}m$ or less, the reduction in the power output is less than 10% from the peak values even when the substrate thickness is increased to 190 ${\mu}m$. Thus, for crystalline Si and GaAs with a relatively long recombination lifetime, extra efforts to be spent on thinning the substrate should be weighed against the expected actual gain in the solar cell output power.

Molecular Beam Epitaxial Growth of GaAs on Silicon Substrate (실리콘 기판위에 분자선속법으로 생장한 GaAs 에피층)

  • 이동선;우덕하;김대욱;우종천
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.1 no.1
    • /
    • pp.82-91
    • /
    • 1991
  • Molecular beam epitaxial growth of GaAs on Si substrate and the results on its analysis are reported. Epitaxy was performed on two different types of the substrate under various grwth conditions, and was analyzed by scanning and transmission electron microscopes, X-ray diffractometer, photoluminescence and Hall measurements. GaAs epitaxial layer has better crystalline quality when it was grown on a tilt-cut substrate. The stress seems to be releaxed more easily when multi-quantum well was introduced in the buffer layer. The epilayer was doped unintentionally with Si during growth due to the diffusion of the substrate. Also observed is that the quantum efficiency of excitonic radiative recombination of the heteroepitaxy is not as good as that of the homoepitaxy in the same doping level.

  • PDF

Effect of ion implanted sapphire substrates for GaN (GaN 성장을 위한 이온 주입된 사파이어 기판의 효과)

  • 이재석;진정근;강민구;노대호;성윤모;변동진
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2003.11a
    • /
    • pp.170-170
    • /
    • 2003
  • We have implanted on sapphire substrate with various ions and investigated the properties of GaN epilayers grown on implanted sapphire substrate by metal organic chemical vapor deposition (MOCVD). Sapphire is typical substrate for GaN epilayers. However, there are many problems such as lattice mismatch and thermal coefficient difference between sapphire substrate and GaN. The ion implanted substrate's surface had decreased internal tree energies during the growth of the GaN epilayer, md the misfit strain was relieved through the formation of an AlN phase on the ions implanted sapphire(0001) substrates. [1] The crystal and optical properties of GaN epilayer grown in ions implanted sapphire(0001) substrate were improved.

  • PDF

Preprocess of GaAs Epitaxial Layer Growth by MBE (MBE에 의한 GaAs 에피층 성장을 위한 사진처리 과정)

  • Kang, Tae Won;Lee, Jae Jin;Hong, Chi You;Kim, Jin Whang;Chung, Kwan Soo
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.23 no.2
    • /
    • pp.243-248
    • /
    • 1986
  • The impurities in As and Ga sources and the contamination of the GaAs substrate prior to growing of MBE GaAs epitaxial layer have been investigated using RHEED, AES and RGA methods. The as source was contaminated by H2O, CO, CO2 and AsO, and the Ga source was contaminated by H2, H2O, CO and CO2. These contaminants could easily be removed by prebaking the source. On the other hand, GaAs substrate was contaminated principally carbon and oxygen. The oxygen could easily be removed by heating the substrate above 480\ulcorner, and the carbon could also be reduced by sputtering the substrate with 1ke V Ar+. The chemically etched substrate surface prior to growing the layer was rough, but it was made to be smooth and clean by heating it above 530 \ulcorner.

  • PDF

Non-polar and Semi-polar InGaN LED Growth on Sapphire Substrate

  • Nam, Ok-Hyeon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.51-51
    • /
    • 2010
  • Group III-nitride semiconductors have been widely studied as the materials for growth of light emitting devices. Currently, GaN devices are predominantly grown in the (0001) c-plane orientation. However, in case of using polar substrate, an important physical problem of nitride semiconductors with the wurtzite crystal structure is their spontaneous electrical polarization. An alternative method of reducing polarization effects is to grow on non-polar planes or semi-polar planes. However, non-polar and semipolar GaN grown onto r-plane and m-plane sapphire, respectively, basically have numerous defects density compared with c-plane GaN. The purpose of our work is to reduce these defects in non-polar and semi-polar GaN and to fabricate high efficiency LED on non/semi-polar substrate. Non-polar and semi-polar GaN layers were grown onto patterned sapphire substrates (PSS) and nano-porous GaN/sapphire substrates, respectively. Using PSS with the hemispherical patterns, we could achieve high luminous intensity. In case of semi-polar GaN, photo-enhanced electrochemical etching (PEC) was applied to make porous GaN substrates, and semi-polar GaN was grown onto nano-porous substrates. Our results showed the improvement of device characteristics as well as micro-structural and optical properties of non-polar and semi-polar GaN. Patterning and nano-porous etching technologies will be promising for the fabrication of high efficiency non-polar and semi-polar InGaN LED on sapphire substrate.

  • PDF

Characteristics of Al/$BaTa_2O_6$/GaN MIS structure (Al/$BaTa_2O_6$/GaN MIS 구조의 특성)

  • Kim, Dong-Sik
    • 전자공학회논문지 IE
    • /
    • v.43 no.2
    • /
    • pp.7-10
    • /
    • 2006
  • A GaN-based metal-insulator-semiconductor (MIS) structure has been fabricated by using $BaTa_2O_6$ instead of conventional oxide as insulator gate. The leakage current o) films are in order of $10^{-12}-10^{-13}A/cm^2$ for GaN on $Al_2O_3$(0001) substrate and in order of $10^{-6}-10^{-7}A/cm^2$ for GaN on GaAs(001) substrate. The leakage current of thses films is governed by space-charge-limited current over 45 MV/cm in case of GaN on $Al_2O_3$(0001) substrate and by Poole-Frenkel emission in case of GaN on GaAs(001).

Properties Electric of AIN Thin Film on the Si and GaAs Substrate (Si와 GaAs기판 위에 AIN 박막의 전기적 특성)

  • Park, Jung-Cheul;Chu, Soon-Nam;Kwon, Jung-Youl;Lee, Heon-Yong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.1
    • /
    • pp.5-11
    • /
    • 2008
  • To study the effects of $H_2$ gas on AIN insulation thin film, we prepared AIN thin film on Si and GaAs substrate by means of reactive sputtering method using $H_2$ gas as an additives, With treatment conditions of $H_2$ gas AIN thin film shows variable electrical properties such as its crystallization and hysterisis affected to electrical property, As a results, AIN thin film fabricated on Si substrate post-treated with $H_2$ gas for 20 minutes shows much better an insulation property than that of pre-treated, And AIN film treated with $H_2$ gas comparing to non-treated AIN film shows a flat band voltage decreasment. But In GaAs substrate $H_2$ gas does not effect on the flat band voltage.

Study on the Properties of ZnO:Ga Thin Films with Substrate Temperatures (기판 온도에 따른 ZnO:Ga 박막의 특성)

  • Kim, Jeong-Gyoo;Park, Ki-Cheol
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.30 no.12
    • /
    • pp.794-799
    • /
    • 2017
  • Ga-doped ZnO (GZO) films were deposited by an RF magnetron sputtering method on glass substrates using ZnO as a target containing 5 wt% $Ga_2O_3$ powder (for Ga doping). The structural, electrical, and optical properties of the GZO thin films were investigated as a function of the substrate temperatures. The deposition rate decreased with increasing substrate temperatures from room temperature to $350^{\circ}C$. The films showed typical orientation with the c-axis vertical to the glass substrates and the grain size increased up to a substrate temperature of $300^{\circ}C$ but decreased beyond $350^{\circ}C$. The resistivity of GZO thin films deposited at the substrate temperature of $300^{\circ}C$ was $7{\times}10^{-4}{\Omega}cm$, and it showed a dependence on the carrier concentration and mobility. The optical transmittances of the films with thickness of $3,000{\AA}$ were above 80% in the visible region, regardless of the substrate temperatures.