• Title/Summary/Keyword: GaAs(100) Surface

Search Result 107, Processing Time 0.036 seconds

Fabrication of Nanopatterned Oxide Layer on GaAs Substrate by using Block Copolymer and Reactive Ion Etching (블록 공중합체와 반응성 이온식각을 이용한 GaAs 기판상의 나노패터닝된 산화막 형성)

  • Kang, Gil-Bum;Kwon, Soon-Mook;Kim, Seoung-Il;Kim, Yong-Tae;Park, Jung-Ho
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.16 no.4
    • /
    • pp.29-32
    • /
    • 2009
  • Dense and periodic arrays of nano-sized holes were patterned in oxide thin film on GaAs substrate. To obtain the nano-size patterns, self-assembling diblock copolymer was used to produce thin film of uniformly distributed parallel cylinders of polymethylmethacrylate (PMMA) in polystyrene (PS) matrix. The PMMA cylinders were removed with UV expose and acetic acid rinse to produce PS nanotemplate. By reactive ion etching, pattern of the PS template was transferred to under laid silicon oxide layer. Transferred patterns were reached to the GaAs substrate by controlling the dry etching time. We confirmed the achievement of etching through the removing oxide layer and observation of GaAs substrate surface. Optimized etching time was 90 to 100 sec. Pore sizes of the nanopattern in the silicon oxide layer were 20~22 nm.

  • PDF

Microstructural analysis and characterization of 1-D ZnO nanorods grown on various substrates (다양한 기판위에 성장한 1차원 ZnO 나노막대의 특성평가 및 미세구조 분석)

  • Kong, Bo-Hyun;Kim, Dong-Chan;Cho, Hyung-Koun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.116-117
    • /
    • 2006
  • I-D ZnO nanostructures were fabricated by thermal evaporation method on Si(100), GaN and $Al_2O_3$ substrates without a catalyst at the reaction temperature of $700^{\circ}C$. Only pure Zn powder was used as a source material and Ar was used as a carrier gas. The shape and growth direction of synthesized ZnO nanostructures is determined by the crystal structure and the lattice mismatch between ZnO and substrates. The ZnO nanostructure on Si substrate were inclined regardless of their substrate orientation. The origin of ZnO/Si interface is highly lattice-mismatched and the surface of the Si substrate inevitably has the $SiO_2$ layer. The ZnO nanostructure on the $Al_2O_3$ substrate was synthesized into the rod shape and grown into particular direction. For the GaN substrate, however, ZnO nanostructure with the honeycomb-like shape was vertically grown, owing to the similar lattice parameter with GaN substrate.

  • PDF

Fabrication and Characteristics of Lateral Type Field Emitter Arrays

  • Lee, Jae-Hoon;Kwon, Ki-Rock;Lee, Myoung-Bok;Hahm, Sung-Ho;Park, Kyu-Man;Lee, Jung-Hee
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.2 no.2
    • /
    • pp.93-101
    • /
    • 2002
  • We have proposed and fabricated two lateral type field emission diodes, poly-Si emitter by utilizing the local oxidation of silicon (LOCOS) and GaN emitter using metal organic chemical vapor deposition (MOCVD) process. The fabricated poly-Si diode exhibited excellent electrical characteristics such as a very low turn-on voltage of 2 V and a high emission current of $300{\;}\bu\textrm{A}/tip$ at the anode-to-cathode voltage of 25 V. These superior field emission characteristics was speculated as a result of strong surface modification inducing a quasi-negative electron affinity and the increase of emitting sites due to local sharp protrusions by an appropriate activation treatment. In respect, two kinds of procedures were proposed for the fabrication of the lateral type GaN emitter: a selective etching method with electron cyclotron resonance-reactive ion etching (ECR-RIE) or a simple selective growth by utilizing $Si_3N_4$ film as a masking layer. The fabricated device using the ECR-RIE exhibited electrical characteristics such as a turn-on voltage of 35 V for $7\bu\textrm{m}$ gap and an emission current of~580 nA/l0tips at anode-to-cathode voltage of 100 V. These new field emission characteristics of GaN tips are believed to be due to a low electron affinity as well as the shorter inter-electrode distance. Compared to lateral type GaN field emission diode using ECR-RIE, re-grown GaN emitters shows sharper shape tips and shorter inter-electrode distance.

A Study on the Growth of $In_{0.53}Ga_{0.47}As/In_{0.52}AI_{0.48}$As/InP Epitaxial Layers for HEMT by MBE (MBE에 의한 HEMT 소자용 $In_{0.53}Ga_{0.47}As/In_{0.52}AI_{0.48}$As/InP 에피택셜층 성장 연구)

  • 노동완;이해권;이재진;이재진;편광의;남기수
    • Journal of the Korean Vacuum Society
    • /
    • v.4 no.2
    • /
    • pp.177-182
    • /
    • 1995
  • 저잡음 HEMT소자 제작을 위한 에피택셜 기판을 MBE방법을 이용하여 $In_{0.53}Ga_{0.47}As/In_{0.52}AI_{0.48}$As/InP 물질계로 성장하였다. 기판온도의 변화, 채널층과 격리층 사이의 성장 일시 멈춤 등의 성장 조건 변화에 따른 Hall 이동도의 변화를 연구하였다. 전자 공급층을 Si으로 델타도핑한 결과 같은 조건에서 성장기판의 온도를 $520^{\circ}C$에서$ 540^{\circ}C$로 증가시키면 실온의 전자이동도는 7,850$\textrm{cm}^2$/Vsec으로 증가하였으며, 격리층과 채널층 사이에서 약 50초간 성장중 채널층의 표면 adatom의 surface migration 시간을 충분히 제공하여 결정결함의 감소로 계면의 급격성이 향상된 결과로 사료된다. 본 실험을 통하여 얻은 최고 이동도 값은 격리층의 두께가 $100\AA$인 경유에 상온 측정결과 $11,400\textrm{cm}^2$/vsec 및 77K 측정결과 $50,300\textrm{cm}^2$/Vsec이었다.

  • PDF

Chemical Vapor Deposition of Ga2O3 Thin Films on Si Substrates

  • Kim, Doo-Hyun;Yoo, Seung-Ho;Chung, Taek-Mo;An, Ki-Seok;Yoo, Hee-Soo;Kim, Yun-Soo
    • Bulletin of the Korean Chemical Society
    • /
    • v.23 no.2
    • /
    • pp.225-228
    • /
    • 2002
  • Amorphous $Ga_2O_3$ films have been grown on Si(100) substrates by metal organic chemical vapor deposition (MOCVD) using gallium isopropoxide, $Ga(O^iPr)_3$, as single precursor. Deposition was carried out in the substrate temperature range 400-800 $^{\circ}C$. X-ray photoelectron spectroscopy (XPS) analysis revealed deposition of stoichiometric $Ga_2O_3$ thin films at 500-600 $^{\circ}C$. XPS depth profiling by $Ar^+$ ion sputtering indicated that carbon contamination exists mostly in the surface region with less than 3.5% content in the film. Microscopic images of the films by scanning electron microscopy (SEM) and atomic force microscopy (AFM) showed formation of grains of approximately 20-40 nm in size on the film surfaces. The root-mean-square surface roughness from an AFM image was ${\sim}10{\AA}$. The interfacial layer of the $Ga_2O_3$/Si was measured to be ${\sim}35{\AA}$ thick by cross-sectional transmission electron microscopy (TEM). From the analysis of gaseous products of the CVD reaction by gas chromatography-mass spectrometry (GC-MS), an effort was made to explain the CVD mechanism.

Characterization of various crystal planes of beta-phase gallium oxide single crystal grown by the EFG method using multi-slit structure (다중 슬릿 구조를 이용한 EFG 법으로 성장시킨 β-Ga2O3 단결정의 다양한 결정면에 따른 특성 분석)

  • Hui-Yeon Jang;Su-Min Choi;Mi-Seon Park;Gwang-Hee Jung;Jin-Ki Kang;Tae-Kyung Lee;Hyoung-Jae Kim;Won-Jae Lee
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.34 no.1
    • /
    • pp.1-7
    • /
    • 2024
  • β-Ga2O3 is a material with a wide band gap of ~4.8 eV and a high breakdown-voltage of 8 MV/cm, and is attracting much attention in the field of power device applications. In addition, compared to representative WBG semiconductor materials such as SiC, GaN and Diamond, it has the advantage of enabling single crystal growth with high growth rate and low manufacturing cost [1-4]. In this study, we succeeded in growing a 10 mm thick β-Ga2O3 single crystal doped with 0.3 mol% SnO2 through the EFG (Edge-defined Film-fed Growth) method using multi-slit structure. The growth direction and growth plane were set to [010]/(010), respectively, and the growth speed was about 12 mm/h. The grown β-Ga2O3 single crystal was cut into various crystal planes (010, 001, 100, ${\bar{2}}01$) and surface processed. The processed samples were compared for characteristics according to crystal plane through analysis such as XRD, UV/VIS/NIR/Spec., Mercury Probe, AFM and Etching. This research is expected to contribute to the development of power semiconductor technology in high-voltage and high-temperature applications, and selecting a substrate with better characteristics will play an important role in improving device performance and reliability.

Si기판을 이용한 대면적 CdTe 박막의 MOCVD성장

  • Kim, Gwang-Cheon;Im, Ju-Hyeok;Yu, Hyeon-U;Jeong, Gyu-Ho;Kim, Hyeon-Jae;Kim, Jin-Sang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.275-275
    • /
    • 2009
  • CdTe(331)/Si(211) and CdTe(400)/Si(100) thin films have been grown by MOCVD(metal organic chemical vapor deposition) system for large scale of IFPAs(IR focal plane arrays). We have investigated the effect of various growth parameters on the surface morphology and structural quality. Single crystalline CdTe(331) films were grown by two stage growth method - low temperature buffer layer step and high temperature growth step. In other case, single crystal of CdTe(400) films were grown on a few atomic layer thickness of GaAs which is grown on Si(100) substrate by molecular beam epitaxy. The crystalline quality of the films was analyzed by X-ray diffraction. The surface morphology and crystal structure of CdTe films were characterized by optical microscope.

  • PDF

Analysis and assessment of the gain of optically pumped surface-normal optical amplifiers (광여기 면형 광증폭기의 이득해석 및 제작)

  • 김운하;정기태;조용환
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.25 no.1B
    • /
    • pp.8-14
    • /
    • 2000
  • This paper analyzes and accesses the gain of optically pumped surface-normal MQW optical amplifiers. The proposed amplifiers have the advantage of polarization independence, high coupling efficiency to and from optical fibers, and flexibility of operating wavelength. We analyzed the gain characteristics of 100 - 200-period MQWs and verified the dependence of a strained lattice and selective doping. Theoretical analysis of such MQWs showsa single-pass gain of 3 dB with broad operation bandwidth. A single-pass gain of 2.6 dB is obtained experimentally in an InGaAs/InGaAlAs MQW amplifier, which is compared with calculations. The use of Fabry-Perot interferometer (FPI) structure in an optical amplifier is a useful way to increase the gain, but causes a problem of narrow operation bandwidth when the single-pass gain is low. Therefore, a single-pass gain above 2to 3 dB is a prerequisite to achieve both a high gain and moderate operation bandwidth in FPI-structured opticalamplifiers. We have designed an FPI-structured surface-normal optical amplifier both with a high gain of broad operation bandwidth of 4.6mm, when a single-pass gain is 3 dB.

  • PDF

Effect of the Cu Bottom Layer on the Properties of Ga Doped ZnO Thin Films

  • Kim, Dae-Il
    • Transactions on Electrical and Electronic Materials
    • /
    • v.13 no.4
    • /
    • pp.185-187
    • /
    • 2012
  • Ga doped ZnO (GZO)/copper (Cu) bi-layered film was deposited on glass substrate by RF and DC magnetron sputtering and then the effect of the Cu bottom layer on the optical, electrical and structural properties of GZO films were considered. As-deposited 100 nm thick GZO films had an optical transmittance of 82% in the visible wavelength region and a sheet resistance of 4139 ${\Omega}/{\Box}$, while the GZO/Cu film had optical and electrical properties that were influenced by the Cu bottom layer. GZO films with 5 nm thick Cu film show the lower sheet resistance of 268 ${\Omega}/{\Box}$ and an optical transmittance of 65% due to increased optical absorption by the Cu metallic bottom layer. Based on the figure of merit, it can be concluded that the thin Cu bottom layer effectively increases the performance of GZO films as a transparent and conducting electrode without intentional substrate heating or a post deposition annealing process.

Depleted optical thyristor - Laser Diode using surface-normal injection method (표면 수직 입사 방식의 완전 공핍 광 싸이리스터 레이저 다이오드)

  • choi, Yoon-Kyung;Kim, Doo-Keun;Choi, Young-Wan;Lee, Suk;Woo, Duck-Hwa;Byun, Young-Tae;Kim, Jae-Hun;Kim, Sun-Ho
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2004.07a
    • /
    • pp.26-27
    • /
    • 2004
  • We present the first demonstration of the vertical-injection depleted optical thyristor laster diode with InGaAs/InGaAsP multiple quantum well structure. The measured switching voltage and current are 3.36 V and 10 A respectively. The holding voltage and current are respectively 1.37 V, 100 A. The lasing threshold current is 131 mA at 25 C. The output peak wavelength is at 1578 nm at a bias current equal to 1.22 times threshold.

  • PDF