• Title/Summary/Keyword: Ga doped

Search Result 489, Processing Time 0.035 seconds

A Study on Blister Formation and Electrical Characteristics with Varied Annealing Condition of P-doped Amorphous Silicon

  • Choe, Seong-Jin;Kim, Ga-Hyeon;Gang, Min-Gu;Lee, Jeong-In;Kim, Dong-Hwan;Song, Hui-Eun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.346.2-346.2
    • /
    • 2016
  • The rear side contact recombination in the crystalline silicon solar cell could be reduced by back surface field. We formed polycrystalline silicon as a back surface field through crystallization of amorphous silicon. A thin silicon oxide applied to the passivation layer. We used quasi-steady-state photoconductance measurement to analyze electrical properties with various annealing condition. And, blister formed on surface of wafer during the annealing process. We observed the blister after varied annealing process with wafer of various surface. Shape and density of blister is influenced by various annealing temperature and process time. As the annealing temperature became higher, the average diameter of blister is decreased and total number of blister is increased. The sample with the $600^{\circ}C$ annealing temperature and 1 min annealing time exhibited the highest implied open circuit voltage and lifetime. We predicted that the various shape and density of blister affects the lifetime and implied open circuit voltage.

  • PDF

Effect of TiO2 buffer layer on the electrical and optical properties of IGZO/TiO2 bi-layered films

  • Gong, Tae-Kyung;joo, Moon hyun;Choi, Dong-Hyuk;Son, Dong-Il;Kim, Daeil
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.178.1-178.1
    • /
    • 2015
  • In and Ga doped ZnO (IGZO) thin films were prepared by radio frequency magnetron sputtering without intentional substrate heating on glass substrate and TiO2-deposited glass substrates to consider the effect of a thin TiO2 buffer layer on the optical and electrical properties of the films. The thicknesses of the TiO2 buffer layer and IGZO films were kept constant at 5 and 100 nm, respectively. Since the IGZO/TiO2 bi-layered films show the higher FOM value than that of the IGZO single layer films, it is supposed that the IGZO/TiO2 bi-layered films will likely perform better in TCO applications than IGZO single layer films.

  • PDF

Optoelectrical properties of IGZO/Cu bi-layered films deposited with DC and RF magnetron sputtering

  • joo, Moon hyun;hyun, Oh-jung;Son, Dong-Il;Kim, Daeil
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.178.2-178.2
    • /
    • 2015
  • In and Ga doped ZnO (IGZO) films were deposited on 5 nm thick Cu film buffered Polycarbonate (PC) substrates with RF magnetron sputtering and then the effect of Cu buffer layer on the optical and electrical properties of the films was investigated. While IGZO single layer films show the electrical resistivity of $1.2{\times}10-1{\Omega}cm$, IGZO/Cu bi-layered films show a lower resistivity of $1.6{\times}10-3{\Omega}cm$. Although the optical transmittance of the films in a visible wave length range is deteriorated by Cu buffer layer, IGZO films with 5 nm thick Cu buffer layer show the higher figure of merit of $2.6{\times}10-4{\Omega}-1$ than that of the IGZO single layer films due to the enhanced opto-electrical performance of the IGZO/Cu bi-layered films.

  • PDF

Morphological evolution of ZnO nanowires using varioussubstrates

  • Kar, J.P.;DAS, S.N.;Choi, J.H.;Myoung, J.M.
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2009.11a
    • /
    • pp.27.1-27.1
    • /
    • 2009
  • In recent years, ZnO nanostructures have drawn considerable attentions for the development of futuristic electronic devices due to their superior structural and optical properties. As the growth of ZnO nanowires by MOCVD is a bottom-up technique, the nature of substrates has a vital role for the dimension and alignment of the nanowires. However, in the pursuit of next generation ZnO based nanodevices, it would be highly preferred if well-ordered ZnO nanowires could be obtained on various substrates like sapphire, silicon, glass etc. Vertically aligned nanowires were grown on A and C-plane sapphire substrates, where as nanopencils were obtained on R-plane sapphire substrates. In addition, C-axis oriented vertical nanowires were also found using an interfacial layer(aluminum nitride film) on silicon substrates. On the other hand, long nanowires were found on Ga-doped ZnO film on glass substrates. Structural and optical properties of the ZnO nanowires on various substrates were also investigated.

  • PDF

Electrical properties of Indium Zinc Tin tummy Transparent Conducting Oxide which doped impurities (Indium Zinc Tin turnary Transparent Conducting Oxide에서의 dopant 첨가에 따른 전기적 특성)

  • Seo, Han;Park, Jung-Ho;Choi, Byung-Hyun;Jy, Mi-Jung;Kim, Sea-Gee;Ju, Byeong-Kwon;Hong, Sung-Pyo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.183-183
    • /
    • 2009
  • 본 연구에선 ITO에 사용되는 Indium의 양을 줄이기 위해 ITO와 유사한 성질을 보이는 조성인 Indium - Zinc - Tin Turnary compound를 연구하였다. 각 조성은 Indium - Zinc - Tin Turnary compound를 기본으로 하여 Zinc site에 이종원소인 Al2O3와 Ga2O3를 doping함에 따라 변화되는 전기적 특성을 살며보았다. 분석에 사용한 Ceramic pellet은 일반적인 Ceramic process를 거쳐 제작되었다. 각 조성의 전기적 특성은 TCR meter와 Hall effect analyser를 이용하여 측정하였고, X-ray diffraction measurements(XRD), Scanning Electron microscope(SEM)를 이용하여 결정학적 특성을 분석하였다.

  • PDF

Sensing properties of ZnO thin films fabricated by RF sputtering method for toxic gas (RF sputtering 방법을 이용하여 제작한 ZnO 박막의 유독성 가스에 대한 반응 특성 연구)

  • Hwang, Hyun-Suk;Kang, Hyun-Il;Song, Joon-Tae
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.247-247
    • /
    • 2009
  • In this work, Ga-doped ZnO (GZO) thin films for toxic gas sensor application were deposited on low temperature co-fired ceramic (LTCC) substrates, by RF magnetron sputtering method. LTCC is one of promising materials for integration with heater, low cost production and high manufacturing yields than silicon substrate. The LTCC substrates with thickness of $400\;{\mu}m$ were fabricated by laminating 12 greentapes which consist of alumina and glass particle in an organic binder. The GZO thin films deposited on the substrates and were analyzed by X-ray diffraction method (XRD) and field emission scanning electron microscope (FESEM). The films are well crystallized in the hexagonal (wurzite) structure with increasing thickness. The fabricated sensors showed good sensitivity and fast response time to common types of toxic gases (NOx, COx).

  • PDF

Spectral Properties of Various $Y_3Al_5O_{12}:Ce^{3+}$ Nanocrystalline Phosphors for the Application of White LEDs

  • Yang, Hee-Sun;Jeon, Mi-Jung;Huh, Young-Duk
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08b
    • /
    • pp.1593-1596
    • /
    • 2007
  • Various yellow-emitting $Y_3Al_5O_{12}:Ce^{3+}$ (YAG:Ce) nanocrystalline phosphors, where some $Al^{3+}$ sites are substituted with $Ga^{3+}$ or some Y sites with Gd3+, have been synthesized. The rare earth ions such as $Pr^{3+}$ and $Tb^{3+}$ were also co-doped into YAG:Ce system, leading to the tunability of CIE coordinates of emission.

  • PDF

Output Property of Ge-Thermopile Sensor (Ge계 열전센서의 출력특성)

  • Park, Su-Dong;Kim, Bong-Seo;Oh, Min-Wook
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.265-266
    • /
    • 2006
  • It was well known that thermopile was quiet a competent sensor using to probe the temperature of "hot point" where the temperature can be off the temperature-limitation for normal operation of the main electrical power equipment. In the present work, we aimed for developing new Ge-thermopile materials which can be using a non-contact temperature sensors at various hot-point of the power equipment and evaluation of its output property. As a results of the present works, a new thermopile which were composed Ga-poded p-type and Sb-doped n-type in Ge-semiconductor were designed and manufactured by MBE(Molecular Beam Epitaxy) process and showed superior sensitivity at room temperature.

  • PDF