• Title/Summary/Keyword: Ga)Se_2$

Search Result 525, Processing Time 0.026 seconds

Growth and study on photocurrent of valence band splitting for AgGaSe2 single crystal thin film by hot wall epitaxy (Hot Wall Epitaxy(HWE)법에 의한 AgGaSe2 단결정 박막 성장과 가전자대 갈라짐에 대한 광전류 연구)

  • Lee, Gyoan-Gyu;Hong, Kwang-Joon
    • Journal of Sensor Science and Technology
    • /
    • v.15 no.6
    • /
    • pp.397-405
    • /
    • 2006
  • Single crystal $AgGaSe_{2}$ layers were grown on thoroughly etched semi-insulating GaAs(100) substrate at $420^{\circ}C$ with hot wall epitaxy (HWE) system by evaporating $AgGaSe_{2}$ source at $630^{\circ}C$. The crystalline structure of the single crystal thin films was investigated by the photoluminescence and double crystal X-ray diffraction (DCXD). The carrier density and mobility of single crystal $AgGaSe_{2}$ thin films measured with Hall effect by van der Pauw method are $4.05{\times}10^{16}/cm^{3}$, $139cm^{2}/V{\cdot}s$ at 293 K, respectively. The temperature dependence of the energy band gap of the $AgGaSe_{2}$ obtained from the absorption spectra was well described by the Varshni's relation, $E_{g}(T)$=1.9501 eV-($8.79{\times}10^{-4}{\;}eV/K)T^{2}$/(T+250 K). The crystal field and the spin-orbit splitting energies for the valence band of the $AgGaSe_{2}$ have been estimated to be 0.3132 eV and 0.3725 eV at 10 K, respectively, by means of the photocurrent spectra and the Hopfield quasicubic model. These results indicate that the splitting of the ${\Delta}So$ definitely exists in the ${\Gamma}_{5}$ states of the valence band of the $AgGaSe_{2}$. The three photocurrent peaks observed at 10 K are ascribed to the $A_{1}-$, $B_{1}-$, and $C_{1}-$exciton peaks for n=1.

Growth and temperature dependence of energy band gap for $CuGaSe_2$ Single Crystal Thin Film by Hot Wall Epitaxy (Hot Wall Epitaxy(HWE)법에 의한 $CuGaSe_2$ 단결정 박막의 성장과 에너지 밴드갭의 온도 의존성)

  • Lee, Sang-Youl;Hong, Kwang-Joon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.97-98
    • /
    • 2007
  • A stoichiometric. mixture of evaporating materials for $CuGaSe_2$ single crystal thin films was prepared from horizontal electric furnace. Using extrapolation method of X-ray diffraction patterns for the polycrystal $CuGaSe_2$, it was found tetragonal structure whose lattice constant $a_0$ and $c_0$ were $5.615\;{\AA}$ and $11.025\;{\AA}$, respectively. To obtain the single crystal thin films, $CuGaSe_2$ mixed crystal was deposited on thoroughly etched semi-insulating GaAs(100) substrate by the hot wall epitaxy (HWE) system. The source and substrate temperatures were $610^{\circ}C$ and $450^{\circ}C$, respectively. The crystalline structure of the single crystal thin films was investigated by the photoluminescence and double crystal X-ray diffraction (DCXD). The carrier density and mobility of $CuGaSe_2$ single crystal thin films measured with Hall effect by van der Pauw method are $4.87{\times}10^{17}\;cm^{-3}$ and $129\;cm^2/V{\cdot}s$ at 293 K, respectively. The temperature dependence of the energy band gap of the $CuGaSe_2$ obtained from the absorption spectra was well described by the Varshni's relation, $E_g(T)\;=\;1.7998\;eV\;-\;(8.7489\;{\times}\;10^{-4}\;eV/K)T^2/(T\;+\;335\;K)$.

  • PDF

Optical Properties of ZnHgGa4Se8 and ZnHgGa4Se8:Co2+ Single Crystals

  • Lee Choong-Il
    • Korean Journal of Materials Research
    • /
    • v.15 no.10
    • /
    • pp.657-661
    • /
    • 2005
  • [ $ZnHgGa_4Se_8\;and\;ZnHgGa_4Se_8::Co^{2+}$ ] single crystals were grown by the Bridgman-Stockbarger method. The single crystals crystallized into a defect chalcopyrite structure. The optical energy band gap of the single crystals was investigated in the temperature range 11-300K. The optical energy band gap of the $ZnHgGa_4Se_8:Co^{2+}$ single crystal was smaller than that of the $ZnHgGa_4Se_8$ single crystal. The temperature dependence of the optical energy band gap of the single crystals was well fitted by the Varshni equqtion. The impurity optical absorption spectrum of the $ZnHgGa_4Se_8:Co^{2+}$ single crystal was measured in the wavelength region 300-2300 m at 80 K. Impurity absorption peaks in the spectrum were analyzed within the framework of the crystal field theory and were attributed to the electron transitions between the energy levels of $Co^{2+}$ sited in the Td symmetry point.

A Study on ZnSe/GaAs Heterojunction Solar Cells Grown by MBE (MBE법으로 제작한 ZnSe/GaAs 이종접합 태양전지에 관한 연구)

  • Lee, Hong-Chan;Lee, Sang-Tae;Oh, Jin-Suck;Kim, Yoon-Sik;Chang, Ji-Ho
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.289-290
    • /
    • 2006
  • We report a study of Zn(S)Se/GaAs heterojunction solar cells grown by molecular beam epitaxy (MBE). Zn(S)Se/GaAs heterostructures prepared under different conditions were characterized in-situ by reflection high-energy electron diffraction (RHEED). Structural and electrical properties were investigated with double crystal X-ray diffraction and current-voltage characteristics, respectively. The fabricated $n-ZnS_{0.07}Se_{0.93}/p-GaAs$ solar cell (SC #2) exhibited open circuit voltage($V_{oc}$) of 0.37 V, short circuit current($I_{sc}$) of $1.7{\times}10^{-2}$ mA, fill factor of 0.62 and conversion efficiency of 7.8 % under 38.5 $mW/cm^2$ illumination.

  • PDF

Fabrication and Characteristics of C(IG)(SeS)2 Absorbers by Selenization and Sulfurization

  • Son, Young-Ho;Jung, Myoung-Hyo;Choi, Seung-Hoon;Choi, Jung-Kyu;Kim, Jin-Ha;Lee, Dong-Min;Park, Joong-Jin;Lee, Jang-Hee;Jung, Eui-Chun;Kim, Jung-Hun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.361-361
    • /
    • 2011
  • Cu(InGa)(SeS2) (CIGS) thin film solar cells have recently reached an efficiency of 20%. Recent studies suggest a double graded band gap structure of the CIGS absorber layer to be a key issue in the production of high efficiency thin film solar cell using by sputtering process method. In this study, Cu(InGa)(SeS2) absorbers were manufactured by selenization and surfulization, we have deposited CIG precusor by sputtering and Se layer by evaporation before selenization. The objective of this study is to find out surfulization effects to improve Voc and to compare with non-surfulization Cu(InGa)Se2 absorbers. Even if we didn't analysis Ga depth profile of Cu(InGa)(SeS2) absorbers, we confirmed increasing of Eg and Voc through surlization process. In non-surfulization Cu(InGa)Se2 absorbers, Eg and Voc are 0.96eV and 0.48V. Whereas Eg and Voc of Cu(InGa)(SeS2) absorbers are 1.16eV and 0.57V. And the efficiency of 9.58% was achieved on 0.57cm2 sized SLG substrate. In this study, we will be discussed to improve Eg and Voc through surfulization and the other method without H2S. gas.

  • PDF

Characterization of $Cu(In_xGa_{1-x})Se_2$ Solar Cells with Ga Content (Ga 함량에 따른 $Cu(In_xGa_{1-x})Se_2$ 태양전지의 특성분석)

  • Kim, Seok-Ki;Kwon, Se-Han;Lee, Doo-Yeol;Lee, Jeong-Churl;Kang, Ki-Whan;Yoon, Kyung-Hoon;Ahn, Byung-Tae;Song, Jin-Soo
    • Proceedings of the KIEE Conference
    • /
    • 1998.07d
    • /
    • pp.1264-1267
    • /
    • 1998
  • $Cu(In_xGa_{1-x})Se_2$ thin films were prepared and characterized with various Ga contents. As the Ga content increased, the grain size of CIGS film became smaller. The 2 $\theta$ values in XRD patterns were shifted to larger values and the overlapped peaks were splitted. The energy bandgap increased from 1.04 to 1.67 eV and the resistivity decreased. The solar cell fabricated with ZnO/CdS/$Cu(In_{0.7}Ga_{0.3})Se_2/Mo$ structure yielded an efficeincy of 14.48% with an acitive area of 0.18 $cm^2$. The efficiency decreased with further increase of Ga content.

  • PDF

Crystal Growth and Characterization of the Solid Solution $(ZnSe)_{1-x}(CuMSe_2)_x$ (M-Al, Ga, or In)

  • 이완인;도영락
    • Bulletin of the Korean Chemical Society
    • /
    • v.16 no.7
    • /
    • pp.588-591
    • /
    • 1995
  • Single crystals of (ZnSe)1-x(CuMSe2)x (M=Al, Ga, or In) were grown by chemical vapor transport technique. Powdered polycrystalline samples of (ZnSe)1-x(CuMSe2)x (M=Al, Ga, or In) were also prepared by the direct combination of the elements. The chemical composition of these single crystals was determined by comparing their lattice parameters with those of the standard polycrystalline samples. The IR transmission range of single crystals of (ZnSe)1-x(CuMSe2)x (M=Al, Ga, or In) is slightly narrower than that observed for pure ZnSe. However, these materials still show good transmission in the long-wavelength IR range. The addition of small amounts of CuMSe2 (M=Al, Ga, or In) considerably increases the hardness of ZnSe.

Growth and Optical Properties for $AgGaSe_2$ Single Crystal Thin Films by Hot Wall Epitaxy (Hot Wall Epitaxy (HWE)법에 의한$AgGaSe_2$ 단결정 박막 성장과 광학적 특성)

  • Hong, Kwang-Joon;Back, Seoung-Nam
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.11a
    • /
    • pp.124-127
    • /
    • 2003
  • The stochiometric $AgGaSe_2$ polycrystalline mixture of evaporating materials for the $AgGaSe_2$ single crystal thin film was prepared from horizontal furnance. To obtain the single crystal thin films, $AgGaSe_2$ mixed crystal and semi-insulating GaAs(100) wafer were used as source material and substrate for the Hot Wall Epitaxy (HWE) system, respectively. The source and substrate temperature were fixed at $630^{\circ}C$ and $420^{\circ}C$, respectively. The thickness of grown single crystal thin films is $2.1{\mu}m$. The single crystal thin films were investigated by photoluminescence and double crystal X-ray diffraction(DCXD) measurement. From the photoluminescence measurement of $AgGaSe_2$ single crystal thin film, we observed free excition ($E_x$) observable only in high quality crystal and neutral bound excition ($D^{\circ}$,X) having very strong peak intensity. And, the full width at half maximum and binding energy of neutral donor bound excition were 8 meV and 14.1 meV, respectively. By Haynes rule, an activation energy of impurity was 141 meV.

  • PDF

Study on Optical Properties and Phase Transition of $TlGa_xIn_{1-x}Se_2$ Solid Solutions ($TlGa_xIn_{1-x}Se_2$ Solid Solution의 광학적 특성 및 상전이에 관한 연구)

  • Yoon, Chang-Sun;Kim, Byong-Ho;Cha, Duk-Joon
    • Journal of the Korean Vacuum Society
    • /
    • v.2 no.2
    • /
    • pp.220-226
    • /
    • 1993
  • An investigation was made of the dependences of the lattice constants and the energy gap on the composition of $TlGa_xIn_{1-x}Se_2$ single cystals grown by Bridgman method. It was found that a discontinuity in $TlGa_xIn_{1-x}Se_2$ solid solutions occurred in the composition range 0.25$0.0{\leq}X{\leq}0.25$) to the monoclinic structure ($0.65{\leq}X{\leq}1.0$) was observed in this composition range. The temperature dependences of the energy gap and the dielectric constant in $TlGaSe_2$ single crystal have shown that the anomalies appeared at 107 K and 120 K corresponding to first-order and second-order phase transitions, respectively.

  • PDF

Property of molecular beam epitaxy-grown ZnSe/GaAs (분자선 에피성장법으로 성장된 ZnSe/GaAs의 특성)

  • Kim, Eun-Do;Son, Young-Ho;Cho, Seong-Jin;Hwang, Do-Weon
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.17 no.2
    • /
    • pp.52-56
    • /
    • 2007
  • We have installed an ultra high vacuum (UHV) molecular beam epitaxy (MBE) system and investigated into the characteristics of MBE-grown ZnSe/GaAs [001] using scanning electron microscopy (SEM), atomic force microscopy (AFM), we confirmed that layer's surface was dense and uniform of molecular layer. We used x-ray diffractometer (XRD) and confirmed two peaks correspond to GaAs [001] substrate and ZnSe epilayer, respectively. We observed photoluminescence (PL) peak approximately at 437 nm and measured PL mapping of 2 inch ZnSe epilayer.