• Title/Summary/Keyword: GUS-index

Search Result 7, Processing Time 0.026 seconds

Adsorption Characteristics of the Herbicide Mefenacet in Soil (제초제 Mefenacet의 토양 중 흡착 특성)

  • Kim, Sung-Min;Cho, Il-Kyu;Lee, Eun-Young;Park, Sun-Hwa;Lee, Jae-Koo
    • Korean Journal of Environmental Agriculture
    • /
    • v.22 no.1
    • /
    • pp.65-69
    • /
    • 2003
  • The adsorption characteristics of [$^{14}C$] mefenacet were investigated with six types of soil collected from different locations. The equilibrium time for adsorption was five hours. The adsorption coefficient(Kf) of Namwon series (volcanic ash soil) showed the highest value of 89.2 while Daejeon series (loamy sand) showed the lowest value of 2.37. The Kf values decreased in order of silty clay loam > silty loam > loamy sand > sandy loam, and the effect of soil properties on the adsorption of mefenacet in soil increased in order of clay mineral < CEC < organic matter. No significant effect was observed by the change of soil pH. The ground water ubiquity scores (GUS index) were $1.20{\sim}1.77$ in three types of soil while $1.81{\sim}2.42$ in the others, indicating that the former group belonged to nonleachers and the latter group to the transitional. Mefenacet in the test soil series seemed to have low possibility of contaminating ground water.

Adsorption and leaching characteristics of fungicide hexaconazole (살균제 hexaconazole의 홉착 및 용탈 특성)

  • Kyung, Kee-Sung;Lee, Byung-Moo;Ihm, Yang-Bin;Lee, Young-Deuk;Han, Seong-Soo;Choi, Ju-Hyeon;Kim, Jin-Hwa;Ryu, Gab-Hee;Lee, Jae-Koo
    • The Korean Journal of Pesticide Science
    • /
    • v.8 no.1
    • /
    • pp.46-53
    • /
    • 2004
  • Adsorption and leaching characteristics of hexaconazole were investigated to estimate the mobility potential of the compound in the soil environment. As well fitted to Freundlich adsorption isotherm, adsorptivity of hexaconazole, ranged 10.56-18.01 of Kf values, seemed high enough to be immobile in soil. This chemical leached more faster from fresh soil with rice plants. Most of $^{14}C$ (86-99% of originally applied $^{14}C$) was distributed within 5 cm soil depth from surface. Considering Koc values of 1,400-1,552 and Groundwater Ubiquity Score (GUS) indices of 1.25-1.35 as well as results from leaching experiment with soil column, hexaconazole falls into the category of improbable leacher, suggesting little mobility in soil.

Adsorption Characteristics of Organophosphorus and Carbamate Pesticides in Four Soils and the Evaluation for Their Leaching Potential Using Two Screening Models (유기인계 및 카바메이트계 농약의 토양흡착성과 간이선발모형을 이용한 용탈 잠재성 평가)

  • Kim, Chan-Sub;Park, Byung-Jun;Ihm, Yang-Bin;Ryu, Gab-Hee
    • Korean Journal of Environmental Agriculture
    • /
    • v.24 no.4
    • /
    • pp.341-349
    • /
    • 2005
  • Soil adsorption study was carried out to define the mobility of pesticides and to evaluate leaching potential in soils. Nine pesticides including metolcarb, molinate, fenobucarb, isazofos, diazinon, fenitrothion, dimepiperate, parathion and chlorpyrifos-methyl were subjected to adsorption experiment for four types of soils, such as upland, paddy, forest and volcanic ash soil. Based on Koc values, metolcarb and molinate were classified as mobile, fenobucarb as mobile or moderately mobile isazofos as moderately mobile, diazinon, fenitrothin, dimepiperate, and parathion as slightly or moderately mobile and chlorpyrifos-methyl as slightly mobile. Two evaluation methods, Groundwater Ubiquity Score (GUS) index and standard indices of soil-chemical adsorption and biodegradation (half-life), were used for the estimation of pesticide leaching potential. Leachabilities of metolcarb, molinate and fenobucarb were evaluated as high, and isazofos, dimepiperate and diazinon as a little potential, while fenitrothion, parthion and chlorpyrifos-methyl showed very low leaching potential. The leaching potential of pesticides was determined on the basis of intrinsic properties of the pesticides and the soil properties. Among the soil properties, organic matter gave a great influence on the leachability in soil. Therefore, leachabilities of the pesticides used were expected less in Sineom soil with relatively higher organic matter than Gangseo, Jungdong and Yesan soil with lower organic matter.

Leaching potential of butachlor, ethoprophos, iprobenfos, isoprothiolane and procymidone in soils as affected by adsorption characteristics (Butachlor, ethoprophos, iprobenfos, isoprothiolane 및 procymidone의 토양흡착성에 따른 용탈 잠재성 평가)

  • Kim, Chan-Sub;Lee, Byung-Moo;Ihm, Yang-Bin;Choi, Ju-Hyeon
    • The Korean Journal of Pesticide Science
    • /
    • v.6 no.4
    • /
    • pp.309-319
    • /
    • 2002
  • Soil adsorption study was carried out to define the mobility of pesticides or to evaluate leaching potential in soils. Five pesticides including ethoprophos, procymidone, iprobenfos, isoprothiolane, and butachlor were subjected to optimized adsorption experiment protocol for three types of cultivation soils. Freundlich adsorption coefficients (K) were ranged $0.35{\sim}0.95$ for ethoprophos, $0.98{\sim}2.2$ for iprobenfos, $1.2{\sim}4.3$ for procymidone, $1.5{\sim}3.5$ for isoprothiolane and $7.9{\sim}19$ for butachlor in three soils. Based on Koc values, ethoprophos was classified as mobile, iprobenfos, isoprothiolane and procymidone as moderately mobile and butachlor as slightly mobile. Two evaluation methods, Groundwater Ubiquity Score (GUS) index and standard indices of soil-chemical adsorption and biodegradation, were used for the estimation of pesticide leaching potential. Leachability of isoprothiolane and iprobenfos were evaluated as moderate, ethoprophos as a little potential, while butachlor and procymidone showed very low leaching potential. The leaching potential of pesticides was essentially determined on the basis of intrinsic properties of the pesticides and environmental properties. Among the soil properties, organic matter gave a great influence on the leachability of soils. Therefore, leachabilities of pesticides were expected less in loam with relatively higher organic matter than clay loam with lower organic matter.

Estimation of Pesticide Leaching Potential Using GUS, RF and AF Index in Cheju Citrus Orchard Soils (제주도 감귤원 토양에서 GUS, RF, AF 지수를 이용한 농약의 용탈잠재성 평가)

  • Oh, Sang-Sil;Moon, Doo-Khil;Chung, Jong-Bae;Hyun, Hae-Nam
    • Korean Journal of Environmental Agriculture
    • /
    • v.21 no.1
    • /
    • pp.7-16
    • /
    • 2002
  • Contamination of groundwater by agrochemicals used in the regional-scale Is now a major environmental problem, and this is especially true for Cheju island where virtually all potable water is from groundwater. The objective of this study was to assess leaching potential of eight pesticides in soils of citrus orchards using groundwater ubiquity score (GUS), retardation factor (RF) and attenuation factor (AF). Considering GUS estimated in 30 citrus orchard soils, metribuzin and metolachlor were classified as leacher, alachlor in volcanic ash soils and linuron in non-volcanic soils were classified as leacher, but chlorothalonil and chlorpyrifos were classified as non-leacher. For RF values, metribuzin was classified to be mobile in soils of low organic carbon, metolachlor and alachlor were classified to be moderately immobile in most soils, but linuron, diuron, diniconazole, chlorothalonil and chlorpyrifos were all classified to be very immobile. For AF values, diniconazole, chlorothalonil, and chlorpyrifos were classified to be very unlikely leachable in all of the soils, metribuzin was classified to be likely leachable, and metolahclor, alachlor, linuron and diuron were classified to be leachable only in non-volcanic soils. Although there were some variations in the relative potential of teachability of pesticides estimated with the three different indices, the ranking was essentially determined on the base of the intrinsic properties of the chemicals and environmental properties. Among the eight pesticides, metribuzin, metolachlor, and alachlor, which have high water solubility and low $K_{oc}$ values, have a significant leaching potential especially in non-volcanic ash soils of low organic carbon. But diniconazole, chlorothalonil, and chlorpyrifos, which have low water solubility and high $K_{oc}$ values, were classified to be very immobile in all of the soils. Therefore, to lower the possibility of pesticide contamination of the groundwater in Cheju island, those pesticides which have high water solubility and low $K_{oc}$ values should be used with care in soils of low organic carbon including non-volcanic ash soils.

Adsorption and Leaching Characteristics of the Insecticide Imidacloprid in Paddy Soils (살충제 Imidacloprid의 논토양 중 흡착 및 용탈 특성)

  • Ihm, Yang-Bin;Kyung, Kee-Sung;Kim, Chan-Sub;Lee, Hee-Dong;Ryu, Gab-Hee;Lee, Jae-Koo
    • Korean Journal of Environmental Agriculture
    • /
    • v.25 no.1
    • /
    • pp.58-63
    • /
    • 2006
  • In order to elucidate the adsorption and leaching characteristics of the insecticide imidacloprid in two types of paddy soils near Suwon, this experiment was carried out with $[^{14}C]$imidacloprid as a radiotracer. In an adsorption study conducted using $[^{14}C]$imidacloprid in 2 test soils, the adsorption coefficient was higher in soil A $(K_f\;2.6)$ than that in soil B $(K_f\;1.7)$. As calculated from Freundlich constant, distribution coefficients and half lives in soils, GUS indices showed low leachabilities of imidacloprid treated on the paddy soils into the groundwater. The amount of imidacloprid leached from the soil columns during the 4 weeks of leaching was less than 2% of the originally treated $^{14}C$. In the leaching test the amounts of $^{14}C$ activities distributed in the soil layer of 0-10 cm were more than 80% of the originally tented $^{14}C$ and those in rice plants were less than 3% of the originally treated $^{14}C$, suggesting that imidacloprid has very low teachability and bioavailability.

Leaching behaviour of the herbicide mefenacet in the soil columns (토양 column중 제초제 mefenacet의 용탈)

  • Kim, Sung-Min;Kwon, Jeong-Wook;Ahn, Ki-Chang;Cho, Il-Kyu;Kyung, Kee-Sung;Lee, Jae-Koo
    • The Korean Journal of Pesticide Science
    • /
    • v.7 no.3
    • /
    • pp.176-181
    • /
    • 2003
  • The leaching behaviour of [aniline-$^{14}C$]mefenacet in soil was investigated using glass columns (5 cm I.D. $\times$ 30 cm. H) packed with two types of soils with different physicochemical properties. $^{14}C$-Mefenacet (8.33 kBq) and mefenacet (in total, 1.05 mg/kg) were treated onto soil columns and rice plants (Oryza sativa L.) were grown for 17 weeks on these columns. Leachates from the columns were collected at the rate of 122.5 mL per week. $^{14}C$-Activities leached from soil A (OM, 3.1%; CEC, 86 mmol(+)/kg; texture, loam) columns with and without rice plants were 1.95 and 4.19% of the originally applied, whereas those from soil B (OM, 1.3%; CEC, 71 mmol(+)/kg; texture, loam) were 2.69 and 7.05%, respectively. These results indicated that larger amounts of $^{14}C$ were percolated from soil B with less organic matter and from the columns without vegetation. $^{14}C$-Activities absorbed by rice plants from soil A and B were 8.95 and 8.47%, respectively, most of which remained in the root and shoot excluding unhulled grains and ears without grains. $62\sim73%$ of the originally applied $^{14}C$ remained in the depth of $0\sim5cm$ in soil. The mass balance indicated that the losses by volatilization and/or mineralization amounted to $3.4\sim9.2%$ of the originally applied. $^{14}C$-Radioactivities in the aqueous phase of the leachates ranged from 59.4 to 97.7% of the radioactivities in leachates, showing the fast transformation of mefenacet to the polar metabolites.