• 제목/요약/키워드: GTP-cyclohydrolase I

검색결과 12건 처리시간 0.029초

Biochemical Characterization of Oligomerization of Escherichia coli GTP Cyclohydrolase I

  • Lee, Soo-Jin;Ahn, Chi-Young;Park, Eung-Sik;Hwang, Deog-Su;Yim, Jeong-Bin
    • BMB Reports
    • /
    • 제35권3호
    • /
    • pp.255-261
    • /
    • 2002
  • GTP cyclohydrolase I (E.C. 3.5.4.16) is a homodecameric protein that catalyzes the conversion of GTP to 7,8-dihydroneopterin triphosphate (H2NTP), the initial step in the biosynthesis of pteridines. It was proposed that the enzyme complex could be composed of a dimer of two pentamers, or a pentamer of tightly associated dimers; then the active site of the enzyme was located at the interface of three monomers (Nar et al. 1995a, b). Using mutant enzymes that were made by site-directed mutagenesis, we showed that a decamer of GTP cyclohydrolase I should be composed of a pentamer of five dimers, and that the active site is located between dimers, as analyzed by a series of size exclusion chromatography and the reconstitution experiment. We also show that the residues Lys 136, Arg139, and Glu152 are of particular importance for the oligomerization of the enzyme complex from five dimers to a decamer.

Affinity Labeling of E. coli GTP Cyclohydrolase I by a Dialdehyde Derivative of Guanosine Triphosphate

  • Ahn, Chi-Young;Park, Sang-Ick;Kim, Ju-Myeong;Yim, Jeong-Bin
    • BMB Reports
    • /
    • 제28권1호
    • /
    • pp.72-78
    • /
    • 1995
  • Time-dependent inactivation of E. coli GTP cyclohydrolase I with a 2',3'-dialdehyde derivative of GTP (oGTP) was directed to the active site of the enzyme, and was dependent on the concentration of oGTP. The kinetics of inactivation were biphasic with a rapid reaction occurring immediately upon exposure of the enzyme to oGTP followed by a slow rate of inactivation. The $K_i$ value of oGTP for the enzyme was 0.25 mM. Inactivation was prevented by preincubation of the enzyme with GTP, the substrate of the enzyme. At 100% inactivation, 2.3 mol of [8.5'-$^3H$]oGTP were bound per each enzyme subunit, which consists of two identical polypeptides. The active site residue which reacted with the affinity label was lysine. oGTP interacted selectively with the ${\varepsilon}$-amino group of lysine in the GTP-binding site to form a morpholine-like structure which was stable without sodium borohydride treatment. However, triphosphate group was eliminated during the hydrolysis step. To identify the active site of the enzyme, [8.5'-$^3H$]oGTP-labeled enzyme was cleaved by endoproteinase Lys-C, and the $^3H$-labeled peptide was purified by HPLC. The amino acid sequence of the active site peptide was Pro-Ser-Leu-Ser-Lys, which corresponds to the aminoterminal sequence of the enzyme.

  • PDF

Ashbua gossypii에서의 리보플라빈 측쇄의 기원 (The Origin of Ribityl Side Chain of Riboflavin in Ashbya gossypii)

  • 최원자;임정빈
    • 미생물학회지
    • /
    • 제23권3호
    • /
    • pp.167-171
    • /
    • 1985
  • E. coli에서 ribosyl-HTP(hydroxytriamino pyrimidine)를 GTP로 부터 합성하는 효소 GTP cyclohydrolase II가 발견된 뒤 riboflavin의 ribityl group이 guanine nucleotide의 ribosyl group에서 직접 유래한다는 가설이 제안되었다. 본 연구에서는$(U- ^{14}C)$ guanosine을 media에 첨가하여 배양한 riboflavin overproducer 균주 Ashybya 에서 추출 정제한 riboflavin과 RNA에 각각 Incorporate된 guanosine label의 specific radioactivity를 비교 측정함으 로써 ribity I group 이 guanosine에서 기훤한다는 결과를 얻을 수 있었다. 이는 GTP cyclohydrolase II가 riboflavin 생합성의 초기 단계에서 직접 관여한다는 가설을 지지해 주는 것이다.

  • PDF

Purification and Characterization of GTP Cyclohydrolase I from Streptomyces tubercidicus, a Producer of Tubercidin

  • Yoo, Jin-Cheol;Han, Ji-Man;Ko, Ok-Hyun;Bang, Hee-Jae
    • Archives of Pharmacal Research
    • /
    • 제21권6호
    • /
    • pp.692-697
    • /
    • 1998
  • GTP cyclohydrolase I catalyzing the first reaction in the biosynthesis of pterin moiety of folic acid in bacteria, was purified from Streptomyces tubercidicus by at least 203-fold with a yield of 32% to apparent homogeneity, using ammonium sulfate fractionation, DEAE-cellulose, Sepharose CL-6B, and hydroxylapatite column chromatography. The molecular weight of the native enzyme was estimated to be 230,000 daltons by gel permeation chromatography. The purified enzyme gave a single band on sodium dodesyl sulfate-polyacrylamide gel electrophoresis and its molecular weight was apparently 58,000 daltons. These results indicate that the enzyme consists of four subunits with the same molecular weight. The $K_m$ and $V_{max}$ values for GTP of the purified enzyme were determined to be 80${\mu}$M and 90nmol/min (mg protein), respectively. The optimum pH and temperature for the enzyme reaction were pH 7.5-8.5 and $40-42^{\circ}C$, respectively. Coenzyme or metal ion was not required for the enzyme activity. The enzyme activity was inhibited by most divalent cations, while it was slightly activated by potassium ion. In case of nucleotides, CTP, GMP, GDP, and UTP inhibited enzyme activity, among which GDP exhibited the strongest inhibitory effect.

  • PDF

Photobacterium Species의 lux 오페론에서 발견된 Riboflavin 생합성 유전자들의 기능 (The Functions of the Riboflavin Genes in the lux Operon from Photobacterium Species)

  • 이찬용;임종호
    • 미생물학회지
    • /
    • 제38권3호
    • /
    • pp.173-179
    • /
    • 2002
  • 발광 박테리아인 Photobacterium species의 lux 오페론에서 발견된 riboflavin 생합성에 관여하는 유전자들(ribI,II,III,IV)의 기능을 조사하였다. 대장균에서 이들 유전자가 포함된 재조합 플라스미드를 발현시켰을 때 상당량의riboflavin이 합성되는 것을 확인하였으며, 또한 이들 유전자들(ribI,II,III,IV)의 기능을 riboflavin에 대하여 종속 영양체인 대장균 돌연변이주(BSV 11,18)를 이용한 유전학적인 방법과 생화학적 방법으로 분석한 결과, 이들은 각각 riboflavin synthase, 3,4-dihydroxy-2-butanone 4-phosphate (DHBP) synthase, lumazine synthase, GTP cyclohydrolase II활성도를 갖는 단백질을 코드하는 것으로 밝혀졌다. 이는Photobacterium species의 riboflavin 유전자 체계가 riboflavin 생합성에 관여하는 모든 5개의 유전자들이 한 오페론에 존재하는 Bacillus subtilis와 주요 riboflavin 유전자들이 분리되어 있는 대장균과는 다른, 중간적인 형태를 갖는다는 것을 나타낸다.

Analysis of Two Promoters that Control the Expression of the GTP cyclohydrolase I Gene in Drosophila melanogaster

  • Byun, Jaegoo;Yoon, Jaeseung;Baek, Kwanghee
    • Molecules and Cells
    • /
    • 제27권5호
    • /
    • pp.583-589
    • /
    • 2009
  • GTP cyclohydrolase I (GTPCH) is a key enzyme in the de novo synthesis of tetrahydrobiopterin. Previously, the Drosophila melanogaster GTPCH gene has been shown to be expressed from two different promoters (P1 and P2). In our study, the 5'-flanking DNA regions required for P1 and P2 promoter activities were characterized using transient expression assay. The DNA regions between -98 and +31, and between -73 and +35 are required for efficient P1 and P2 promoter activities, respectively. The regions between -98 and -56 and between -73 and -41 may contain critical elements required for the expression of GTPCH in Drosophila. By aligning the nucleotide sequences in the P1 and P2 promoter regions of the Drosophila melanogaster and Drosophila virilrs GTPCH genes, several conserved elements including palindromic sequences in the regions critical for P1 and P2 promoter activities were identified. Western blot analysis of transgenic flies transformed using P1 or P2 promoter-lacZ fusion plasmids further revealed that P1 promoter expression is restricted to the late pupae and adult developmental stages but that the P2 promoter driven expression of GTPCH is constitutive throughout fly development. In addition, X-gal staining of the embryos and imaginal discs of transgenic flies suggests that the P2 promoter is active from stage 13 of embryo and is generally active in most regions of the imaginal discs at the larval stages.

물곰팡이 Allomyces macrogynus에서 Tetrahydrobiopterin의 생합성 (Biosynthesis of Tetrahydrobiopterin in an Aquatic Fungus, Allomyces macrogynus)

  • 이수웅;박영식
    • 미생물학회지
    • /
    • 제34권4호
    • /
    • pp.243-247
    • /
    • 1998
  • Allomyces macrogynus를 대상으로 꼬리홀씨와 팡이실에서 tetrahydrobiopterin의 세포내 농도와 그 생합성 효소들의 활성을 비교분석하였다. 습윤중량의 세포를 기준으로 비교하였을 때 biopterin은 홀씨에 비해 팡이실에서 14배 정도 많은 양이 검출되었다. 그 생합성에 관여하는 GTP cyclohydrolase I(GTPCH), 6-pyruboyltetrahydropterin synthase(PTPS), sepiapterin reductase(SR)의 효소활성을 ammonium sulfate 단백질 농축액에서 분석한 결과 GTPCH와 PTPS의 활성은 팡이실에서 꼬리홀씨에 비해 약 2배 정도 높은 값을 보여주었다. 반면 SR의 활성은 오히려 꼬리홀씨에서 10배 정도 높은 것으로 분석되었다. 그리고 Northern blot 분석 결과 SR의 전사물도 꼬리홀씨에서 훨씬 많이 검출되었다. 이러한 결과들은 tetrahydrobiopterin이 Allomyces macrogynus의 팡이실 분화단계에 관여하고 있음을 추정케하는 한편 SR의 생리활성과 관련된 의문을 제기하고 있다.

  • PDF

Alteration of Striatal Tetrahydrobiopterin in Iron-Induced Unilateral Model of Parkinson's Disease

  • Aryal, Bijay;Lee, Jin-Koo;Kim, Hak Rim;Kim, Hyung-Gun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제18권2호
    • /
    • pp.129-134
    • /
    • 2014
  • It has been suggested that transition metal ions such as iron can produce an oxidative injuries to nigrostriatal dopaminergic neurons, like Parkinson's disease (PD) and subsequent compensative increase of tetrahydrobiopterin ($BH_4$) during the disease progression induces the aggravation of dopaminergic neurodegeneration in striatum. It had been established that the direct administration of $BH_4$ into neuron would induce the neuronal toxicity in vitro. To elucidate a role of $BH_4$ in pathogenesis in the PD in vivo, we assessed the changes of dopamine (DA) and $BH_4$ at striatum in unilateral intranigral iron infused PD rat model. The ipsistriatal DA and $BH_4$ levels were significantly increased at 0.5 to 1 d and were continually depleting during 2 to 7 d after intranigral iron infusion. The turnover rate of $BH_4$ was higher than that of DA in early phase. However, the expression level of GTP-cyclohydrolase I mRNA in striatum was steadily increased after iron administration. These results suggest that the accumulation of intranigral iron leads to generation of oxidative stress which damage to dopaminergic neurons and causes increased release of $BH_4$ in the dopaminergic neuron. The degenerating dopaminergic neurons decrease the synthesis and release of both $BH_4$ and DA in vivo that are relevance to the progression of PD. Based on these data, we propose that the increase of $BH_4$ can deteriorate the disease progression in early phase of PD, and the inhibition of $BH_4$ increase could be a strategy for PD treatment.

대장균 세포내 단백질 분해효소, protease Pi의 정제와 특성 (Isolation and properties of protease Pi in escherichia coli)

  • 이영섭;곽태환;임정빈;정진하
    • 미생물학회지
    • /
    • 제24권2호
    • /
    • pp.119-126
    • /
    • 1986
  • A periplasmic endoprotease, named protease Pi, was purified to homogeneity from Escherkchia coli by conventional procedure with insulin as substrate. This enzyme degrades insulin and glucagon to trichloroacetic acid-soluble meterials, but shows little or no hydrolysis of bovine serum albumin, casein or globin. Its molecular weight was 110, 000 when determined by gel filtration on Sephacryl S-300 and was 105, 000 when estimated by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate. Thus, it appears to be single polypeptide. This snzyme is metalloprotease, since it is completely inhibited by o-phenanthroline and can be activated by addition of divalent metal cations, such as $Mg^{2+}\;and\;Co^{2+}$. It is destinct from protease Ci, a cytoplasmic insulin degrading enzyme, since protease Pi is localized to the periplasm. Since protease Pi selectively degrades GTP cyclohydrolase I, it appears to play a role in the regulation of pteridine biosynthesis.

  • PDF

Human Embryonic Stem Cells Co-Transfected with Tyrosine Hydroxylase and GTP Cyclohydrolase I Relieve Symptomatic Motor Behavior in a Rat Model of Parkinson′s Disease

  • Kil, Kwang-Soo;Lee, Chang-Hyun;Shin, Hyun-Ah;Cho, Hwang-Yoon;Yoon, Ji-Yeon;Lee, Gun-Soup;Lee, Young-Jae;Kim, Eun-Young;Park, Se-Pill
    • 한국발생생물학회:학술대회논문집
    • /
    • 한국발생생물학회 2003년도 제3회 국제심포지움 및 학술대회
    • /
    • pp.101-101
    • /
    • 2003
  • Main strategy for a treatment of Parkinson's disease (PD), due to a progressive degeneration of dopaminergic neurons, is a pharmaceutical supplement of dopamine derivatives or ceil replacement therapy. Both of these protocols have pros and cons; former exhibiting a dramatic relief but causing a severe side effects on long-term prescription and latter also having a proven effectiveness but having availability and ethical problems Embryonic stem (ES) cells have several characteristics suitable for this purpose. To investigate a possibility of using ES cells as a carrier of therapeutic gene(s), human ES (hES, MB03) cells were transfected with cDNAs coding for tyrosine hydroxylase (TH) in pcDNA3.1 (+) and the transfectants were selected using neomycin (250 $\mu /ml$). Expression of TH being confirmed, two of the positive clone (MBTH2 & 8) were second transfected with GTP cyclohydrolase 1 (GTPCH 1) in pcDNA3.1 (+)-hyg followed by selection with hygromycin-B (150 $\mu /ml$) and RT-PCR confirmation. By immune-cytochemistry, these genetically modified but undifferentiated dual drug-resistant cells were found to express few of the neuronal markers, such as NF200, $\beta$-tubulin, and MAP2 as well as astroglial marker GFAP. This results suggest that over-production of BH4 by ectopically expressed GTPCH I may be involved in the induction of those markers. Transplantation of the cells into striatum of 6-OHDA- denervated PD animal model relieved symptomatic rotational behaviors of the animals. Immunohistochemical analyses showed the presence of human cells within the striatum of the recipients. These results suggest a possibility of using hES cells as a carrier of therapeutic gene(s).

  • PDF