• 제목/요약/키워드: GTP-binding factor

검색결과 15건 처리시간 0.031초

Saccharomyces cerevisiae의 베타-1,3-글루칸 합성효소 체계의 특성 (Properties of $\beta$-1,3-glucan Synthase System in Saccharomyces cerevisiae)

  • 박희문;김정윤;김성욱;복성해
    • 한국미생물·생명공학회지
    • /
    • 제23권3호
    • /
    • pp.316-321
    • /
    • 1995
  • Some properties of $\beta$-1, 3-glucan synthase system in Saccharamyces cerevisiae were investigated. By extraction with detergent and salt, the membrane preparations could be dissociated into two components, one soluble, the other still membrane bound. Both components, in addition to GTP, were necessary for the activity of $\beta$-1, 3-glucan synthase like other fungi. The protective effect of guanosine nucleotides on the soluble factor pointed to the possibility that this fraction contained a GTP-binding protein. Addition of increasing amounts of soluble factor to a constant amount of insoluble catalytic factor, vice versa, gave rise to a saturation curve. These results, including different types of evidence, indicate that the soluble factor and the catalytic factor form a complex.

  • PDF

Cloning and characterization of ADP-ribosylation factor 1b from the olive flounder Paralichthys olivaceus

  • Son, So-Hee;Jang, Jin-Hyeon;Jo, Hyeon-Kyeong;Chung, Joon-Ki;Lee, Hyung-Ho
    • Fisheries and Aquatic Sciences
    • /
    • 제20권6호
    • /
    • pp.10.1-10.7
    • /
    • 2017
  • Small GTPases are well known as one of the signal transduction factors of immune systems. The ADP-ribosylation factors (ARFs) can be classified into three groups based on the peptide sequence, protein molecular weight, gene structure, and phylogenetic analysis. ARF1 recruits coat proteins to the Golgi membranes when it is bound to GTP. The class I duplicated ARF gene was cloned and characterized from the olive flounder (Paralichthys olivaceus) for this study. PoARF1b contains the GTP-binding motif and the switch 1 and 2 regions. PoARF1b and PoARF1b mutants were transfected into a Hirame natural embryo cell to determine the distribution of its GDP/GTP-bound state; consequently, it was confirmed that PoARF1b associates with the Golgi body when it is in a GTP-binding form. The results of the qPCR-described PoARF1b were expressed for all of the P. olivaceus tissues. The authors plan to study the gene expression patterns of PoARF1b in terms of immunity challenges.

Mutational Analysis of the Effector Domain of Brassica Sar1 Protein

  • Kim, Min-Gab;Lee, Jung-Ro;Lim, Hye-Song;Shin, Mi-Rim;Cheon, Min-Gyeong;Lee, Deok-Ho;Kim, Woe-Yeon;Lee, Sang-Yeol
    • Journal of Applied Biological Chemistry
    • /
    • 제50권3호
    • /
    • pp.109-114
    • /
    • 2007
  • Sar1p is a ras-related GTP-binding protein that functions in intracellular protein transport between the endoplasmic reticulum (ER) and the Golgi complex. The effector domain of Ras family proteins is highly conserved and this domain is functionally interchangeable in plant, yeast and mammalian Sar1. Using a recombinant Brassica sar1 protein (Bsar1p) harboring point mutations in its effector domain, we here investigated the ability of Sar1p to bind and hydrolyze GTP and to interact with the two sar1-specific regulators, GTPase activating protein (GAP) and guanine exchange factor (GEF). The T51A and T55A mutations impaired Bsar1p intrinsic GTP-binding and GDP-dissociation activity. In contrast, mutations in the switch domain of Bsar1 did not affect its intrinsic GTPase activity. Moreover, the P50A, P54A, and S56A mutations affected the interaction between Bsar1p and GAP. P54A mutant protein did not interact with two regulating proteins, GEF and GAP, even though the mutation didn't affect the intrinsic GTP-binding, nucleotide exchange or GTPase activity of Bsar1p.

Ric-8B Modulates the Function of Alpha Subunit of Go

  • ;길성호
    • 대한의생명과학회지
    • /
    • 제13권2호
    • /
    • pp.127-133
    • /
    • 2007
  • Heterotrimeric GTP binding proteins (G proteins) mediate signal generated by neurotransmitter and hormones. Among all G proteins, Go is the most abundant in brain but its role in brain is not clearly understood. To determine the function of the alpha subunit of Go (Go$\alpha$), we search for the interacting partner of Go$\alpha$ in brain using yeast two-hybrid system. A resistant to inhibitor of cholinesterase (Ric-8B) was identified as a Go$\alpha$ interacting protein. We confirmed interaction between Go$\alpha$ and Ric-8b employing in vitro affinity binding assay and showed that the Ric-8b increased the function of Go$\alpha$. Our findings indicate that Ric-8b is possible guanine nucleotide exchange factor for Go$\alpha$.

  • PDF

Proteome Analysis of Vernalization-Treated Arabidopsis thaliana by Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry

  • Cho, Mi-Ran;Lee, Kyung-Hyeon;Hyun, You-Bong;Lee, Il-Ha;Kim, Hie-Joon
    • Bulletin of the Korean Chemical Society
    • /
    • 제28권3호
    • /
    • pp.427-431
    • /
    • 2007
  • In order to gain insight into the molecular changes at the protein level in plants exposed to low temperature for a long period of time (vernalization), proteome analyses of vernalization-treated Arabidopsis thaliana have been carried out by two-dimensional gel electrophoresis followed by matrix-assisted laser desorption/ ionization time-of-flight mass spectrometry. Fourteen proteins including ATP binding/GTP binding/translation elongation factor and glycine-rich RNA-binding protein 7 (GRP7) showed differential expression in vernalization-treated Arabidopsis thaliana. GRP7 showed the most dramatic increase in expression suggesting its involvement in response to vernalization treatment.

고추 탄저병균의 포자 발아 단계 발현 유전자 동정 (Identification of Genes Expressed during Conidial Germination of the Pepper Anthracnose Pathogen, Colletotrichum acutatum)

  • 김정환;이종환;최우봉
    • 생명과학회지
    • /
    • 제23권1호
    • /
    • pp.8-14
    • /
    • 2013
  • 고추 탄저병균의 포자 발아 단계에서 발현되는 유전자를 파악하기 위해 포자 발아단계cDNA library를 제작하고, 임의로 선택된 cDNA clone들에 대한 EST sequencing을 실시하였다. 총 983개 EST를 확보하여 contig assembly를 실시한 결과, 197개 contigs와 267개 singletons으로 조합되어, 최종적으로 464개의 유전자를 동정하였다. 464개 유전자 서열에서 유추한 아미노산 서열을 이용한 상동유전자 검색을 통해 절반의 유전자가 GenBank에 기존 등록된 유전자와 유의성 있는 유사성을 보였다. 가장 높은 빈도로 발현된 유전자는 elongation factor, histone protein, ATP synthease, 14-3-3 protein, clock controlled protein을 암호화하는 유전자들이었다. 그리고 고추 탄저병균의 세포 발달과정에 관여 하는것으로 추정되는 GTP-binding protein, MAP kinase, transaldolase, ABC transporter 유전자들도 검출되었다. 또한 고추탄저병균의 병원성에 영향을 미치는 것으로 파악되는 ATP citrate lyase, CAP20, manganese-superoxide dismutase 유전자들도 검출되어, EST sequencing 을 통한 세포 발달 단계 발현 유전자 탐색이 효과적임을 알 수 있었다.

The Alpha Subunit of Go Interacts with Promyelocytic Leukemia Zinc Finger Protein

  • Ghil Sung-Ho
    • 대한의생명과학회지
    • /
    • 제10권4호
    • /
    • pp.407-413
    • /
    • 2004
  • Heterotrimeric GTP binding proteins (G proteins) transduce signals of a variety of hormones and neurotransmitters. Go is one of the most abundant G proteins in the brain and classified as the Gi/Go family due to their sequence homology to Gi proteins. While the Gi proteins inhibit adenylyl cyclase and decrease the intracellular cAMP concentration, the functions of Go is not clearly understood despite their sequence homology to Gi. The promeylocytic leukemia zinc finger protein (PLZF) is a DNA binding transcription factor and is expressed highly in central nervous system (CNS). Several studies reported that PLZF may be involved in regulation segmentation/differentiation during CNS development. Here, I report that the alpha subunit of Go (Go ) interacts with PLZF. The interaction between Goa and PLZF was verified by using GST pulldown assay and co-immunoprecipitation. Our findings indicate that Goa could modulate gene expression via interaction with PLZF during neuronal or brain development.

  • PDF

The Alpha Subunit of Go Interacts with Brain Specific High Mobility Group Box Containing Protein

  • ;길성호
    • 대한의생명과학회지
    • /
    • 제12권4호
    • /
    • pp.405-411
    • /
    • 2006
  • Heterotrimeric GTP binding proteins (G proteins) mediate signal transduction generated by neurotransmitter and hormones. Among G-proteins, Go is classified as a member of the Go/Gi family and the most abundant heterotrimeric G protein in brain. Most of the mechanistic analyses on the activation of Go indicated its action to be mediated by the $G{\beta}{\gamma}$ dimer because downstream effectors for its ${\alpha}$ subunit have not been clearly defined. To determine the downstream effectors of alpha subunits of Go ($Go{\alpha}$), we used yeast two-hybrid system to screen $Go{\alpha}$ interacting partners in cDNA library from the human brain. A brain specific high mobility group box containing protein (BHX), A possible transcription factor, was identified as a $Go{\alpha}$ interacting protein. We confirmed interaction between $Go{\alpha}$ and BHX employing in vitro affinity binding assay. Moreover, active form of $Go{\alpha}$ preferentially interacts with BHX than inactive farm. Our findings indicate that $Go{\alpha}$ could modulate gene expression via interaction with BHX during neuronal or brain development.

  • PDF

Differential expression of soybean SLTI100 gene encoding translation elongation factor 1A by abiotic stresses

  • Chung, Eun-Sook;Cho, Chang-Woo;So, Hyun-A;Yun, Bo-Hyun;Lee, Jai-Heon
    • Journal of Plant Biotechnology
    • /
    • 제36권3호
    • /
    • pp.255-260
    • /
    • 2009
  • The translation elongation factor 1A, eEF1A, catalyzes the binding of aminoacyl-tRNA to the A-site of the ribosome by a GTP-dependent mechanism. By subtractive suppression hybridization technique, we have isolated a soybean low-temperature inducible gene, SLTI100 encoding translation elongation factor 1A. Multiple sequence alignments and phylogenic analysis showed that SLTI100 and other eEF1As originated from diverse organisms are highly conserved. RNA expression of SLTI100 was specifically induced by low temperature, high salt, ABA, or drought stress. Based on the subcellular localization of the corresponding gene product fused to GFP, we were able to confirm that SLTI100-GFP was restricted to the nucleus and cytoplasm. We propose that soybean eEF1A may play an important role in translational regulation during abiotic stress responses in plants.

Regulation of Tumor Neceosis Factor-${\alpha}$ Receptors and Signal Transduction Pathways

  • Han, Hyung-Mee
    • Toxicological Research
    • /
    • 제8권2호
    • /
    • pp.343-357
    • /
    • 1992
  • Tumor necrosis factor-${\alpha}$(TNF), a polypeptide hormone secreted primarily by activated macrophages, was originally identified on the basis of its ability to cause hemorrhagic necrosis and tumor regression in vivo. Subsequently, TNF has been shown to be an important component of the host responses to infection and cancer and may mediate the wasting syndrome known as cachexia. These systemic actions of TNF are reflected in its diverse effects on target cells in vitro. TNF initiates its diverse cellular actions by binding to specific cell surface receptors. Although TNF receptors have been identified on most of animal cells, regulation of these receptors and the mechanisms which transduce TNF receptor binding into cellular responses are not well understood. Therefore, in the present study, the mechanisms how TNF receptors are being regulated and how TNF receptor binding is being transduced into cellular responses were investigated in rat liver plasma membranes (PM) and ME-180 human cervical carcinoma cell lines. $^{125}I$-TNF bound to high ($K_d=1.51{\pm}0.35nM$)affinity receptors in rat liver PM. Solubilization of PM with 1% Triton X-100 increased both high affinity (from $0.33{\pm}0.04\;to\;1.67{\pm}0.05$ pmoles/mg protein) and low affinity (from $1.92{\pm}0.16\;to\;7.57{\pm}0.50$ pmoles/mg protein) TNF binding without affecting the affinities for TNF, suggesting the presence of a large latent pool of TNF receptors. Affinity labeling of receptors whether from PM or solubilized PM resulted in cross-linking of $^{125}I$-TNF into $M_r$ 130 kDa, 90 kDa and 66kDa complexes. Thus, the properties of the latent TNF receptors were similar to those initially accessible to TNF. To determine if exposure of latent receptors is regulated by TNF, $^{125}I$-TNF binding to control and TNF-pretreated membranes were assayed. Specific binding was increased by pretreatment with TNF (P<0.05), demonstrating that hepatic PM contains latent TNF receptors whose exposure is promoted by TNF. Homologous up-regulation of TNF receptors may, in part, be responsible for sustained hepatic responsiveness during chronic exposure to TNF. As a next step, the post-receptor events induced by TNF were examined. Although the signal transduction pathways for TNF have not been delineated clearly, the actions of many other hormones are mediated by the reversible phosphorylation of specific enzymes or target proteins. The present study demonstrated that TNF induces phosphorylation of 28 kDa protein (p28). Two dimensional soidum dodecyl sulfate-polyacrylamide gel electrophoresis(SDS-PAGE) resolved the 28kDa phosphoprotein into two isoforms having pIs of 6.2 and 6.1. The pIs and relative molecular weight of p28 were consistent with those of a previously characterized mRNA cap binding protein. mRNA cap binding proteins are a class of translation initiation factors that recognize the 7-methylguanosine cap structure found on the 5' end of eukaryotic mRNAs. In vitro, these proteins are defined by their specific elution from affinity columns composed of 7-methylguanosine 5'-triphosphate($m^7$GTP)-Sepharose. Affinity purification of mRNA cap binding proteins from control and TNF treated ME-180 cells proved that TNF rapidly stimulates phosphorylation of an mRNA cap binding protein. Phosphorylation occurred in several cell types that are important in vitro models of TNF action. The mRNA cap binding protein phosphorylated in response to TNF treatment was purifice, sequenced, and identified as the proto-oncogene product eukaryotic initiation factor-4E(eIF-4E). These data show that phosphorylation of a key component of the cellular translational machinery is a common early event in the diverse cellular actions of TNF.

  • PDF