DOI QR코드

DOI QR Code

Identification of Genes Expressed during Conidial Germination of the Pepper Anthracnose Pathogen, Colletotrichum acutatum

고추 탄저병균의 포자 발아 단계 발현 유전자 동정

  • Kim, Jeong-Hwan (Department of Biotechnology and Bioengineering/Biomaterial Control, Dong-Eui University) ;
  • Lee, Jong-Hwan (Department of Biotechnology and Bioengineering/Biomaterial Control, Dong-Eui University) ;
  • Choi, Woobong (Department of Biotechnology and Bioengineering/Biomaterial Control, Dong-Eui University)
  • 김정환 (동의대학교 생명공학과/바이오물질제어학과) ;
  • 이종환 (동의대학교 생명공학과/바이오물질제어학과) ;
  • 최우봉 (동의대학교 생명공학과/바이오물질제어학과)
  • Received : 2012.11.13
  • Accepted : 2012.11.22
  • Published : 2013.01.30

Abstract

Genes expressed during conidial germination of the pepper anthracnose fungus Colletotrichum acutatum were identified by sequencing the 5' end of unidirectional cDNA clones prepared from the conidial germination stage. A total of 983 expressed sequence tags (ESTs) corresponding to 464 genes, 197 contigs and 267 singletons, were generated. The deduced protein sequences from half of the 464 genes showed significant matches (e value less than 10-5) to proteins in public databases. The genes with known homologs were assigned to known functional categories. The most abundantly expressed genes belonged to those encoding the elongation factor, histone protein, ATP synthease, 14-3-3 protein, and clock controlled protein. A number of genes encoding proteins such as the GTP-binding protein, MAP kinase, transaldolase, and ABC transporter were detected. These genes are thought to be involved in the development of fungal cells. A putative pathogenicity function could be assigned for the genes of ATP citrate lyase, CAP20 and manganese-superoxide dismutase.

고추 탄저병균의 포자 발아 단계에서 발현되는 유전자를 파악하기 위해 포자 발아단계cDNA library를 제작하고, 임의로 선택된 cDNA clone들에 대한 EST sequencing을 실시하였다. 총 983개 EST를 확보하여 contig assembly를 실시한 결과, 197개 contigs와 267개 singletons으로 조합되어, 최종적으로 464개의 유전자를 동정하였다. 464개 유전자 서열에서 유추한 아미노산 서열을 이용한 상동유전자 검색을 통해 절반의 유전자가 GenBank에 기존 등록된 유전자와 유의성 있는 유사성을 보였다. 가장 높은 빈도로 발현된 유전자는 elongation factor, histone protein, ATP synthease, 14-3-3 protein, clock controlled protein을 암호화하는 유전자들이었다. 그리고 고추 탄저병균의 세포 발달과정에 관여 하는것으로 추정되는 GTP-binding protein, MAP kinase, transaldolase, ABC transporter 유전자들도 검출되었다. 또한 고추탄저병균의 병원성에 영향을 미치는 것으로 파악되는 ATP citrate lyase, CAP20, manganese-superoxide dismutase 유전자들도 검출되어, EST sequencing 을 통한 세포 발달 단계 발현 유전자 탐색이 효과적임을 알 수 있었다.

Keywords

References

  1. Adams, M. D., Dubnick, M. A., Kerlavage, R., Moreno, R., Kelley, J. M., Utterback, T. R., Nagle, J. W., Fields, C. and Venter, J. C. 1992. Sequence identification of 2,375 human brain genes. Nature 355, 632-634. https://doi.org/10.1038/355632a0
  2. Banno, S., Kimura, M., Tokai, T., Kasahar, S., Higa-Nishiyama, A., Takahashi-Ando, N., Hamamoto, H., Fujimura, M., Staskawicz, B. J. and Yamaguchi, I. 2003. Cloning and characterization of genes specially expressed during infection stages in the rice blast fungus. FEMS Microbiol Lett 222, 221-227. https://doi.org/10.1016/S0378-1097(03)00307-0
  3. Brown, D. W., Cheung, F. R., Proctor, H., Butchko, R. A. E., Zheng, L., Lee, Y., Utterback, T., Smith, S., Feldblyum, T., Anthony, E., Glenn, A. E., Plattner, R. D., Kendra, D. F., Town, C. D. and Whitelaw, C. A. 2005. Comparative analysis of 87,000 expressed sequence tags from the fumosin- producing fungus Fusarium vertivillioides. Fungal Genet Biol 42, 848-861. https://doi.org/10.1016/j.fgb.2005.06.001
  4. Choi, W. 2003. Global approaches to identify genes involved during infection structure formation in rice blast fungus, Magnaporthe grisea. Plant Pathol J 19, 34-42. https://doi.org/10.5423/PPJ.2003.19.1.034
  5. Dean, R. A. 1997. Signal pathways and appressorium morphogenesis. Annu Rev Phytopathol 35, 211-234. https://doi.org/10.1146/annurev.phyto.35.1.211
  6. Donofrio, N. M., Oh, Y., Lundy, R., Pan, H., Brown, D. E., Jeong, J. S., Coughlan, S., Mitchell, T. K. and Dean, R. A. 2006. Global gene expression during nitrogen starvation in the rice blast fungus, Magnaporthe grisea. Fungal Genet Biol 43, 605-617. https://doi.org/10.1016/j.fgb.2006.03.005
  7. Ebbole, D. J., Jin, Y., Thon, M., Pan, H., Bhattarai, E., Thomas, T. and Dean, R. 2004. Gene discovery and gene expression in the rice blast fungus, Magnaporthe grisea: analysis of expressed sequence tags. Mol Plant-Microbe Interact 17, 1337-1347. https://doi.org/10.1094/MPMI.2004.17.12.1337
  8. Ewing, B. and Green, P. 1998. Base-calling of automated sequencer traces using phred. II. Error probabilities. Genome Res 8, 186-194.
  9. Gordon, D., Abajian, C. and Green, P. 1998. Consed: a graphical tool for sequence finishing. Genome Res 8, 175-185. https://doi.org/10.1101/gr.8.3.175
  10. Hwang, C. S., Flaishman, M. A., and Kolattukudy, P. E. 1995. Cloning of a gene expressed during appressorium formation by Colletotrichum gloeosporioides and a marked decrease in virulence by disruption of this gene. Plant Cell 7, 183-193. https://doi.org/10.1105/tpc.7.2.183
  11. Hwang, C. S., Rhie, G., Oh, J. H., Huh, W. K., Yim, H. S. and Kang, S. O. 2002. Copper- and zinc-containing superoxide dismutase (Cu/ZnSOD) is required for the protection of Candida albicans against oxidative stresses and the expression of its full virulence. Microbiol 148, 3705-3713.
  12. Idnurm, A. and Howlett, B. J. 2002. Isocitrate lyaseis essential for pathogenicity of the fungus Leptosphaeria maculans to Canola (Brassica napus). Eukaryot. Cell 1, 719-724.
  13. Jakupovic, M., Heintz, M., Reichmann, P., Mendgen, K. and Hahn, M. 2006. Microarray analysis of expressed sequence tags from haustoria of the rust fungus Uromyces fabae. Fungal Genet Biol 43, 8-19. https://doi.org/10.1016/j.fgb.2005.09.001
  14. Kamoun, S., Hraber, P., Sorbal, B., Nuss, D. and Govers, F. 1999. Initial assessment of gene diversity for the oomycete pathogen Phytophthora infestans based on expressed sequences. Fungal Genet Biol 28, 94-106. https://doi.org/10.1006/fgbi.1999.1166
  15. Keon, J., Antoniw, J., Rudd, J., Skinner, W., Hargreaves, J. and Hammond-Kosack, K. 2005. Analysis of expressed sequence tags from the wheat leaf blotch pathogen Mycosphaerella graminicola (anamorph Septoria tritici). Fungal Genet Biol 42, 376-389. https://doi.org/10.1016/j.fgb.2004.12.005
  16. Keon, J., Bailey, A. and Hargreaves, J. 2000. A group of expressed cDNA sequences from the wheat fungal leaf blotch pathogen, Mycophaerella graminicola (Septoria tritici). Fungal Genet Biol 29, 118-133. https://doi.org/10.1006/fgbi.2000.1186
  17. Kim, C. H. and Park, K. S. 1988. A predicted model of disease progression of red-pepper anthracnose. Korean J Plant Pathol 4, 325-331.
  18. Kim, Y. S., Min, J. Y., Kang, B. K., Bach, N. V., Choi, W., Park, E. W. and Kim, H. T. 2007. Analyses of the less benzimidazole- senstivity of the isolates of Colletotrichum spp. Causing the anthracnose in pepper and strawberry. Plant Pathol J 23, 187-192. https://doi.org/10.5423/PPJ.2007.23.3.187
  19. Lu, J. P., Liu, T. B. and Lin, F. C. 2005. Identification of mature appressorium-enriched transcripts in Magnaporthe grisea. FEMS Microbiol Lett 25, 131-137.
  20. Nugent, K. G., Choffe, K. and Saville, B. J. 2004. Gene expression during Ustilago maydis diploid filamentous growth: EST library creation and analyses. Fungal Genet Biol 41, 349-360. https://doi.org/10.1016/j.fgb.2003.11.006
  21. Park, K. S. and Kim, C. H. 1992. Identification, distribution and etiological characteristics of anthracnose fungi of red pepper in Korea. Korean J Plant Pathol 8, 61-69.
  22. Qutob, D., Hraber, P. T., Sobral, B. W. S. and Gijzen, M. 2000. Comparative analysis of expressed sequences in Phytophthora sojae. Plant Physiol 123, 243-253. https://doi.org/10.1104/pp.123.1.243
  23. Sacadura, N. T. and Saville, B. J. 2003. Gene expression and EST analyses of Ustilago maydis germinating teliospores. Fungal Genet Biol 40, 47-64. https://doi.org/10.1016/S1087-1845(03)00078-1
  24. Schena, M., Shalon, D., Davis, R. W. and Brown, P. O. 1995. Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 270, 467-470. https://doi.org/10.1126/science.270.5235.467
  25. Thomas, S. W., Rasmussen, S. W., Glaring, M. A., Rouster, J. A., Christiansen, S. K. and Oliver, R. P. 2001. Gene identification in the obligate fungal pathogen Blumeria graminis by expressed sequence tag analysis. Fungal Genet Biol 33, 195-211. https://doi.org/10.1006/fgbi.2001.1281
  26. Umahara, T., Uchihara, T., Tsuchiya, K., Nakamura, A. and Iwamoto, T. 2007. Intranuclear localization and isoform- dependent translocation of 14-3-3 proteins in human brain with infarction. J Neurol Sci 260, 159-166. https://doi.org/10.1016/j.jns.2007.04.053
  27. Vatanaviboon, P., Varaluksit, T., Seeanukun, C. and Mongkolsuk, S. 2002. Transaldolase exhibits a protective role against menadione toxicity in Xanthomonas campestris pv. phaseoli. Biochem Biophy Res Commun 297, 968-973. https://doi.org/10.1016/S0006-291X(02)02329-X
  28. Velculescu, V. E., Zhang, L., Vogelstein, B. and Kinzler, K. W. 1995. Serial analysis of gene expression. Science 270, 484-487. https://doi.org/10.1126/science.270.5235.484
  29. Xu, J. R. 2001. MAP kinases in fungal pathogens. Fungal Genet Biol 31, 137-152.

Cited by

  1. Isolation and Characterization of the Colletotrichum acutatum ABC Transporter CaABC1 vol.30, pp.4, 2014, https://doi.org/10.5423/PPJ.OA.08.2014.0077
  2. Screening for Anti-inflammatory Activities in Extracts from Korean Herb Medicines vol.40, pp.1, 2014, https://doi.org/10.15230/SCSK.2014.40.1.95