References
- Astrup, T. and Mullertz, S. 1952. The fibrin plate method for estimating fibrinolytic activity. Arch Biochem Biophys 6, 346-351.
- Baruah, D. B., Dash, R. N., Chaudhari, M. R. and Kadam, S. S. 2006. Plasminogen activators: A comparison. Vasc Pharmacol 44, 1-9. https://doi.org/10.1016/j.vph.2005.09.003
- Cai, Y., Bao, W., Jiang, S., Weng, M., Jia, Y., Yin, Y., Zheng, Z. and Zou, G. 2011. Directed evolution improves the fibrinolytic activity of nattokinase from Bacillus natto. FEMS Microbiol Lett 325, 155-161. https://doi.org/10.1111/j.1574-6968.2011.02423.x
- Choi, N. S. and Kim, S. H. 2001. The effect of sodium chloride on the serine-type fibrinolytic enzymes and the thermostability of extracellular protease from Bacillus amyloliquefaciens DJ-4. J Biochem Mol Biol 34, 134-138.
- Collen, D. and Lijnen, H. R. 2005. Thrombolytic agents. Thromb Haemost 93, 627-630.
- Desantis, G., Shang, X. and Jones, J. B. 1999. Toward tailoring the specificity of the S1 pocket of subtilisin B. lentus: chemical modification of mutant enzymes as a strategy for removing specificity. Biochemistry 38, 13391-13397. https://doi.org/10.1021/bi990861o
- Ho, S. N., Hunt, H. D., Morton, R. M., Pullen, J. K. and Pease, L. R. 1989. Site-directed mutagenesis by overlap extension using the polymerase chain reaction. Gene 77, 51-59. https://doi.org/10.1016/0378-1119(89)90358-2
- Hsieh, C., Lu, W., Hsieh, W., Huang, Y., Lai, C. and Ko, W. 2009. Improvement of the stability of nattokinase using γ-polyglutamic acid as a coating material for microencapsulation. LWT-Food Sci Technol 42, 144-149. https://doi.org/10.1016/j.lwt.2008.05.025
- Hwang, K. J., Choi, K. H., Kim, M. J., Park, C. S. and Cha, J. 2007. Purification and characterization of a new fibrinolytic enzyme of Bacillus licheniformis KJ-31, isolated from Korean traditional Jeot-gal. J Microbiol Biotechnol 17, 1469-1476.
- Ito, M. and Nagane, M. 2001. Improvement of the electo- transformation efficiency of facultatively alkaliphilic Bacillus pseudofirmus OF4 by high osmolarity and glycine treatment. Biosci Biotechnol Biochem 65, 2773-2775. https://doi.org/10.1271/bbb.65.2773
- Kannel, W. B. 2005. Overview of hemostatic factors involved in atherosclerotic cardiovascular disease. Lipids 40, 1215- 1220. https://doi.org/10.1007/s11745-005-1488-8
- Kim, G. M., Lee, A. R., Lee, K. W., Park, J., Lee, M., Chun, J., Cha, J., Song, Y. and Kim, J. H. 2009. Characterization of a 27 kDa fibrinolytic enzyme from Bacillus amyloliquefaciens CH51 isolated from Cheonggukjang. J Microbiol Biotechnol 19, 997-1004. https://doi.org/10.4014/jmb.0811.600
- Kim, J., Kim, J. H., Choi, K. H., Kim, J. H., Song, Y. S. and Cha, J. 2011. Enhancement of the catalytic activity of a 27 kDa subtilisin-like enzyme from Bacillus amyloliquefaciens CH51 by in vitro mutagenesis. J Agric Food Chem 59, 8675-8682. https://doi.org/10.1021/jf201947m
- Kim, W., Choi, K., Kim, Y., Park, H., Choi, J., Lee, Y., Oh, H., Kwon, I. and Lee, S. 1996. Purification and characterization of a fibrinolytic enzyme produced from Bacillus sp. strain CK 11-4 screened from Chungkook-Jang. Appl Environ Microbiol 62, 2482-2488.
- Law, D. and Zhang, Z. 2007. Stabilization and target delivery of nattokinase using compression coating. Drug Dev Ind Pharm 33, 495-503. https://doi.org/10.1080/03639040601050247
- Omura, K., Hitosugi, M., Zhu, X., Ikeda, M., Maeda, H. and Tokudome, S. 2005. A newly derived protein from Bacillus subtilis natto with both antithrombotic and fibrinolytic effects. J Pharmacol 99, 247-251.
- Peng, Y., Huang, Q., Zhang, R. H. and Zhang, Y. Z. 2003. Purification and characterization of a fibrinolytic enzyme produced by Bacillus amyloliquefaciens DC-4 screened from douchi, a traditional Chineses soybean food. Comp Biochem Physiol 134, 45-52.
- Price, N. C. and Stevens, L. 2000. Fundamentals of Enzymology; The cell and molecular biology of catalytic proteins. 3rd edition. Oxford University Press.
- Sumi, H., Hamada, H., Nakanishi, K. and Hiratani, H. 1990. Enhancement of the fibrinolytic activity in plasma by oral administration of NK. Acta Haematol 84, 139-143. https://doi.org/10.1159/000205051
- Sumi, H., Hamada, H., Tsushima, H. and Mihara, H. 1987. A novel fibrinolytic enzyme (nattokinase) in the vegetable cheese Natto; a typical and popular soybean food in the Japanese diet. Experientia 43, 1110-1111. https://doi.org/10.1007/BF01956052
- Wang, C., Du, M., Zheng, D., Kong, F., Zu, G. and Feng, Y. 2009. Purification and characterization of nattokinase from Bacillus subtilis Natto B-12. J Agric Food Chem 57, 9722-9729. https://doi.org/10.1021/jf901861v
- Wells, J. A., Cunningham, B. C., Graycar, T. P. and Estell, D. A. 1987. Recruitment of substrate-specificity properties from one enzyme into a related one by protein engineering. Proc Natl Acad Sci 84, 5167-5171. https://doi.org/10.1073/pnas.84.15.5167
- Weng, M., Zheng, Z., Bao, W., Cai, Y., Yin, Y. and Zou, G. 2009. Enhancement of oxidative stability of the subtilisin nattokinase by site-directed mutagenesis expressed in Escherichia coli. Biochim Biophys Acta 1794, 1566-1572. https://doi.org/10.1016/j.bbapap.2009.07.007
- Wu, B., Wu, L., Ruan, L., Ge, M. and Chen, D. 2009. Screening of endophytic fungi with antithrombic activity and identification of a bioactive metabolite from the endophytic fungal strain CPCC 480097. Curr Microbiol 58, 522-527. https://doi.org/10.1007/s00284-009-9361-7
- Xue, G., Johnson, J. S. and Dalrymple, B. P. 1999. High osmolarity improves the electro-transformation efficiency of the gram-positive bacteria Bacillus subtilis and Bacillus licheniformis. J Microbiol Methods 34, 183-191. https://doi.org/10.1016/S0167-7012(98)00087-6
- Yang, Y., Jiang, L., Yang, S., Zhu, L., Wu, Y. and Li, Z. 2000. A mutant subtilisin E with enhanced thermostability. World J Microbiol Biotechnol 16, 249-251. https://doi.org/10.1023/A:1008959825832
- Zhao, H. and Arnold, F. H. 1999. Directed evolution converts subtilisin E into a functional equivalent of thermitase. Protein Eng 12, 47-53. https://doi.org/10.1093/protein/12.1.47