• Title/Summary/Keyword: GTN 모델

Search Result 10, Processing Time 0.026 seconds

Large Deformation Inelastic Analysis of API-X80 Steel Linepipes (API-X80 강재 라인파이프의 대변형 비선형 해석)

  • Lee, Seung-Jung;Yoon, Young-Cheol;Cho, Woo-Yeon;Yu, Seong-Mun;Zi,, Goang-Seup
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.22 no.4
    • /
    • pp.363-370
    • /
    • 2009
  • We simulated large deformation and inelastic behavior of API-X80 steel linepipes using nonlinear finite element method. Gurson-Tvergaard-Needleman(GTN) model is employed for the development of the constitutive model of the steel. The GTN model is implemented in the form of the user-supplied material subroutine(UMAT) for the commercial software of ABAQUS. To calibrate the model parameters, we simulated the behavior of the uniaxial tension test using ABAQUS equipped with the developed GTN model. Using the set of the model parameters, we were able to capture the characteristics of the plastic buckling of API-X80 steel linepipes.

Numerical Assessment of Tensile Strain Capacity for X80 Line Pipe Using GTN Model (GTN 모델을 이용한 X80 라인파이프의 인장 변형성능 해석)

  • Yoon, Young-Cheol;Kim, Ki-Seok;Lee, Jae Hyuk;Cho, Woo-Yeon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.36 no.6
    • /
    • pp.979-990
    • /
    • 2016
  • This study presents a nonlinear finite element procedure involving a phenomenological model to validate the tensile strain capacity of the X80 line pipe developed for the strain-based design purpose. The procedure is based on the Gurson-Tvergaard-Needleman (GTN) model, which models nucleation, growth and coalescence of void volume fraction occurred inside a metal. In this study, the user-defined material module (UMAT) is implemented in the commercial finite element platform ABAQUS and is applied to the nonlinear damage analysis of steel specimens. Material parameters for the nonlinear damage analysis of base and weld metals are calibrated from numerical simulations for the tensile tests of round bar and full thickness specimens. They are then employed in the numerical simulations for SENT (Single Edge Notch Tension) test and CWPT (Curved Wide Plate Test) and in the simulations, the tensile strain capacities are naturally evaluated. Comparison of the numerical results with the experimental results and the conventional empirical formulae shows that the proposed numerical procedure can fairly well predict the tensile strain capacity of X80 line pipe. So, it is readily expected to be effectively applied to the strain-based design procedure.

Large Deformation and Inelastic Analysis of API X80 Steel (API X80 강의 대변형 비선형 해석)

  • Lee, Seung-Jung;Yoon, Young-Cheol;Zi, Goang-Seup;Cho, Woo-Yeon;Yu, Seong-Mun
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2009.04a
    • /
    • pp.375-378
    • /
    • 2009
  • 본 논문에서는 API X80 강의 대변형 비선형 거동을 모사하기 위해 비선형 유한요소해석을 수행하였다. 고강도 강재의 거동을 모사하기 위해 GTN(Gurson-Tvergaad-Needleman) 모델을 사용하였으며, 비선형 해석을 위해 범용 유한요소해석 프로그램인 ABAQUS와 User Subroutine의 사용자 재료모델(UMAT)을 연계하여 사용하였다. 해석결과와 인장실험의 결과와의 비교를 통해 GTN 모델에서 사용되는 재료모델 상수를 도출하였고, 도출된 값들은 개발된 사용자 재료모델과 함께 API X80 강의 각종 실험을 모사하고 대변형 상황의 강재 파이프의 거동을 분석하는데 유용하게 사용될 수 있다.

  • PDF

Finite Element Ductile Failure Simulations of Tensile and Bend Bars made of API X65 Steels (API X65 강의 인장 및 굽힘 시편에 대한 유한요소 연성파괴 해석)

  • Oh, Chang-Kyun;Jin, Te-Eun;Kim, Yun-Jae
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1696-1701
    • /
    • 2007
  • This paper presents a micro-mechanical model of ductile fracture for the API X65 steel using the Gurson-Tvergaard-Needleman (GTN) model. Experimental tests and FE damage simulations using the GTN model are performed for smooth and notched tensile bars, from which the parameters in the GTN model are calibrated. As application, the developed GTN model is applied to simulate small-sized, single-edge-cracked tensile and bend bars, via three-dimensional FE damage analyses. Comparison of FE damage analysis results with experimental test data shows overall good agreements.

  • PDF

Development of an Evaluation Method for the Compressive-Bending Plastic Buckling Capacity of Pipeline Steel Tube (라인파이프 강관의 압축-휨 좌굴 성능 평가 기법 개발)

  • Zi, Goang-Seup;Lee, Seung-Jung;Yoon, Young-Cheol;Hwang, Sang-Soo;Cho, Woo-Yeon
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2010.04a
    • /
    • pp.613-616
    • /
    • 2010
  • 본 논문에서는 라인파이프 강관의 압축-휨 좌굴 성능 평가 기법을 개발하기 위해 비선형 유한요소해석을 사용하였다. 고강도 강재의 연성거동을 모사하기 위해 범용 유한요소해석 프로그램인 ABAQUS의 사용자 재료모델을 사용하여 GTN(Gurson-Tvergaad-Needleman) 모델을 작성하였다. 실험결과와의 비교를 통해 재료모델상수를 결정하였으며 압축-휨 좌굴 실험의 모사에 사용하였다. 압축-휨 좌굴 성능 평가는 비선형 유한요소해석의 결과로부터 얻어진 한계압축변형률과 최대휨모멘트를 기준으로 수행될 수 있다. 개발된 성능 평가 기법은 고강도 강재를 이용한 라인파이프의 설계 시 대변형 거동 분석에 유용하게 사용될 수 있다.

  • PDF

Experimental and Theoretical Investigations on the Fracture Criteria for Structural Steels (구조물용 강재의 파단기준에 대한 실험 및 이론 연구)

  • Choung, Joon-Mo;Cho, Sang-Rai
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.45 no.2
    • /
    • pp.157-167
    • /
    • 2008
  • Six smooth flat tensile specimens and eighteen punch specimens with three different thicknesses were machined from steel of JIS G3131 SPHC. In addition to punch tests, incremental tensile tests were conducted to obtain average true flow stress - logarithmic true strain curves. Through parametric FE simulations for the tensile specimens, material parameters related to GTN model were identified. Using indenters with three kinds of radius, punch tests were carried out to obtain fracture characteristics of punch specimens. Numerical analyses using both fracture models, GTN and $J_2$ plasticity model, gave that the former estimated well the fracture of punch specimen but the latter did not. A new concept for critical size of plate elements was introduced based on minimum relative sharpness between contact structures. Consequently, a new criterion for critical element size was proposed to be less than 20% of minimum relative radius of interacting structures.

Study of Crack Propagation and Absorbed Energy in Heat Affected Zone Using a Finite Element Method (유한요소법을 이용한 용접열영향부의 균열진전 및 샤르피 흡수에너지 연구)

  • Jang, Yun-Chan;Lee, Young-Seog
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.22 no.6
    • /
    • pp.541-548
    • /
    • 2009
  • In this study, Charpy impact test and numerical studies were performed to examine the effects of failure behavior and energy absorption on the notch position. For this purpose, carbon steel plate(SA-516 Gr. 70) with thickness of 25mm usually used for pressure vessel was welded by SMAW(Shielded Metal-Arc Welding)method and specimens were fabricated from the welded plate. The Charpy impact tests were then performed with specimens having different notch positions varying within HAZ. A series of three-dimensional FE analysis which simulates the Charpy test and crack propagation are carried out as well. We divided HAZ into two, three and four regions to apply mechanical properties of HAZ to FE-analys. Results reveal that the absorbed energies during impact test depend significantly on the notch position. To obtain the results of reliability, HAZ should be divided into at least three regions.

Evaluation of Ductile Fracture Characteristics Based on Local Approach (국부접근법에 입각한 연성재료의 파괴특성 평가)

  • Lee, Tae-Rin;Chang, Yoon-Suk;Choi, Jae-Boong;Kim, Young-Jin
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.49-54
    • /
    • 2004
  • Several cell models, so-called local approach, have been proposed as engineering approaches to numerically simulate ductile fracture characteristics. In this paper, two- and three-dimensional finite element analyses incorporating both modified GTN and Rousselier models were carried out. Smooth and notched bars and CT25 specimens were assessed for StE460 and DIN22NiMoCr37 materials which were quoted from previous researches. Micro-mechanical parameters used in the assessment were established by fitting the numerical results with the experiments, and J-R curves derived from the simulations were found to be in good agreement with the corresponding experimental results.

  • PDF

Assessment of In-plane Size Effect of Nuclear Materials Based on Damage Mechanics (손상역학에 근거한 원자력 재료의 평면크기 영향 분석)

  • Chang Yoon-Suk;Lee Tae-Rin;Choi Jae-Boong;Seok Chang-Sung;Kim Young-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.4 s.247
    • /
    • pp.393-401
    • /
    • 2006
  • The influences of stress triaxiality on ductile fracture have been investigated for various specimens and structures. With respect to a transferability issue, recently, the interests on local approaches reflecting micromechanical specifics are increased again due to rapid progress of computational environments. In this paper, the applicability of the local approaches has been examined through a series of finite element analyses incorporating modified GTN and Rousselier models as well as fracture toughness tests. The ductile crack growth of nuclear carbon steels is assessed to verify the transferability among compact tension (CT) specimens with different in-plane size. At first, the basic material constants were calibrated for standard CT specimens and used to predict fracture resistance (J-R) curves of larger CT specimens. Then, the in-plane size effects were examined by comparing the numerically estimated J-R curves with the experimentally determined ones. The assessment results showed that the in-plane size effect should be considered for realistic engineering application and the damage models might be used as useful tool for ductile fracture evaluation.

Evaluation of Crack Length and Thickness Effects of Fracture Specimen using Damage Mechanics (손상역학에 근거한 파괴시편의 균열길이와 두께 영향 평가)

  • Chang Yoon-Suk;Lee Tae-Rin;Choi Jae-Boong;Seok Chang-Sung;Kim Young-Jin
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.4 s.181
    • /
    • pp.116-123
    • /
    • 2006
  • During the last two decades, many researchers investigated influences of stress triaxiality on ductile fracture for various specimens and structures. With respect to a transferability issue, the local approach reflecting micro-mechanical specifics is one of effective methods to predict constraint effects. In this paper, the applicability of the local approach was examined through a series of finite element analyses incorporating modified GTN (Gurson-Tvergaard-Needleman) and Rousselier models as well as fracture toughness tests. To achieve this goal, fracture resistance (J-R) curves of several types of compact tension (CT) specimens with various crack length, with various thickness and with/without 20% side- grooves were estimated. Then. the constraint effects were examined by comparing the numerically estimated J-R curves with experimentally determined ones. The assessment results showed that the damage models might be used as useful tool for fracture toughness estimation and both the crack length and thickness effects should be considered for realistic structural integrity evaluation.