Journal of the Korean Institute of Intelligent Systems
/
v.11
no.9
/
pp.849-854
/
2001
GTM(Generative Topographic Mapping) model is a probabilistic version of the SOM(Self Organizing Maps) which was proposed by T. Kohonen. The GTM is modelled by latent or hidden variables of probability distribution of data. It is a unique characteristic not implemented in SOM model, and, therefore, it is possible with GTM to analyze data accurately, thereby overcoming the limits of SOM. In the present investigation we proposed a BGTM(Bayesian GTM) combined with Bayesian learning and GTM model that has a small mis-classification ratio. By combining fast calculation ability and probabilistic distribution of data of GTM with correct reasoning based on Bayesian model, the BGTM model provided improved results, compared with existing models.
Proceedings of the Korean Institute of Intelligent Systems Conference
/
2001.12a
/
pp.287-290
/
2001
Bishop이 제안한 generative Topographic Mapping(GTM)은 Kohonen이 제안한 자율 학습 신경망인 Self Organizing Maps(SOM)의 확률적 버전이다. 본 논문에서는 이러한 GTM 모형에 베이지안 추론을 결합하여 작은 오분류율을 가지는 분류 알고리즘인 베이지안 GTM(Bayesian GTM)을 제안한다. 이 방법은 기존의 GTM의 빠른 계산 처리 능력과 베이지안 추론을 이용하여 기존의 분류 알고리즘보다 우수한 결과가 나타남을 실험을 통하여 확인하였다.
Proceedings of the Korea Institute of Convergence Signal Processing
/
2003.06a
/
pp.114-117
/
2003
본 논문에서는 video stream내의 움직이는 객체 정보를 추정하고 동적 GTM(genetic tree-map) 알고리즘을 사용하여 얼굴 영역 검출 기법을 제안한다. 기존의 일반적인 객체 추정 기법은 클러스터(cluster)과정을 통하여 영상 정보를 분할하고 그 중 움직이는 객체 부분을 복원함으로서 추정하였다. 제안하는 기법은 BMA(block matching algorithm)[1] 알고리즘을 사용하여 video stream 에서 움직이는 객체 정보를 얻고 클러스터 알고리즘으로 PCA(principal component analysis)를 사용한다. PCA 기법은 입력 데이터에 관해 통계적 특성을 이용하여 주성분을 찾는다. 주축과 영역분할 알고리즘을 사용하여 데이터를 분할하고, 분할된 객체 정보를 사용하여 특정 객체만을 추정하는 것이 가능하다. 이렇게 추정된 객체를 얼굴영역의 feature에 대하여 신경망 학습인 동적 GTM 알고리즘을 사용하여 생성된 동적 GTM 맵의 정보에 따라 객체의 얼굴영역만을 추출해 낼 수 있다[2-6].
Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
/
v.12
no.2
/
pp.135-151
/
2014
It is very important to properly understand such "Transport Pathways" elements as "Pipe" and "Cell" pathways in commercial GoldSim Transport Module (GTM) for developing higer quality models and programs for performance assessment of complex radioactive waste repositories. With an illustrative case under an earthquake scenario, by which an increasement in the groundwater flow rate occurs though the geological medium, ways of avoiding possible modeling errors in the nuclide transport modeling in the radioactive waste repository system for its safety assessment by utilizing such pathways are discussed and a proper usage of the pathways is proposed.
In this paper, we suggest dynamic genetic tree-maps(DGTM) using optimal features on recognizing data. The DGTM uses the genetic algorithm about the importance of features rarely considerable on conventional neural networks and introduces GTM(genetic tree-maps) using tree structure according of the priority of features. Hence, we propose the extended formula, DGTM(dynamic GTM) has dynamic functions to separate and merge the neuron of neural network along the similarity of features.
In this paper, we propose a Tone Mapping Operator (TMO) that preserves global contrast and precisely preserves boundary information. In order to reconstruct a High Dynamic Range (HDR) image to a Low Dynamic Range (LDR) display by using Threshold value vs. Intensity value (TVI) based on Human Visual System (HVS) and contrast value. As a result, the global contrast of the image can be preserved. In addition, by combining the boundary information detected using Guided Image Filtering (GIF) and the detected boundary information using the spatial masking of the Just Noticeable Difference (JND) model, And improved the perceived image quality of the output image. The conventional TMOs are classified into Global Tone Mapping (GTM) and Local Tone Mapping (LTM). GTM preserves global contrast, has the advantages of simple implementation and fast execution time, but it has a disadvantage in that the boundary information of the image is lost and the regional contrast is not preserved. On the other hand, the LTM preserves the local contrast and boundary information of the image well, but some areas are expressed unnatural like the occurrence of the halo artifact phenomenon in the boundary region, and the calculation complexity is higher than that of GTM. In this paper, we propose TMO which preserves global contrast and combines the merits of GTM and LTM to preserve boundary information of images. Experimental results show that the proposed tone mapping technique has superior performance in terms of cognitive quality.
The amount of multimedia traffic over the Internet has been increasing because of the development of networks and mobile devices. Accordingly, studies on multicast, which is used to provide efficient multimedia and video services, have been conducted. In particular, studies on centralized multicast tree construction have attracted attention with the advent of software-defined networking. Among the centralized multicast tree construction algorithms, the group Takahashi and Matsuyama (GTM) algorithm is the most commonly used in multiple multicast tree construction. However, the GTM algorithm considers only the network-cost overhead when constructing multicast trees; it does not consider the temporary service disruption that arises from a link change for users receiving an existing service. Therefore, in this study, we propose a multiple multicast tree construction algorithm that can reduce network cost while avoiding considerable degradation of service quality to users. This is accomplished by considering both network-cost and link-change overhead of users. Experimental results reveal that, compared to the GTM algorithm, the proposed algorithm significantly improves the user-experienced quality of service by substantially reducing the number of linkchanged users while only slightly adding to the network-cost overhead.
Proceedings of the Korean Society for Bioinformatics Conference
/
2002.06a
/
pp.49-61
/
2002
현대적 실험방법 및 유전공학의 발전으로 최근 생물학적 자료는 비약적으로 늘어나고 있다. 이러한 자료의 기계학습을 이용한 분석방법은 많은 비용과 시간을 요구하는 전통적인 생물적 실험에 있어서 실험 시간을 단축시켜주고 실험비용을 줄여 주게 된다. 본 논문에서는 특별히 micro array data의 분석에 있어서 graphical model에 기반한 기계학습 방법들을 소개한다. 이중 GTM 은 특히 시각화 효과가 뛰어난 방법으로 Graphical model 에 기반한 GTM의 제반 특성을 소개하고 이를 yeast data의 분석에 적용시킨 결과를 자세히 알아보고자 한다. (**Presentation file을 수신 보관 중)
Kim, Kangjoo;Lee, Jin-Won;Choi, Seung-Hyun;Kim, Seok-Hwi;Kim, Hyunkoo;Hamm, Se-Yeong;Kim, Rak-Hyeon
Journal of Soil and Groundwater Environment
/
v.24
no.1
/
pp.10-16
/
2019
Alkalinity is an essential parameter for understanding geochemical processes and calculating partial pressure of $CO_2$, dissolved inorganic carbon, and mineral saturation indices. The Gran Titration Method (GTM) is one of the most accurate methods for measuring the alkalinity in water samples. However, this method has not been widely employed in measuring groundwater alkalinity in Korea, probably due to inadequate and insufficient understanding of the method. In this regard, this article was prepared to introduce GTM and related know-hows learned from the authors' experiences in measuring alkalinity. This paper also introduces a MS Excel-based alkalinity calculator as a handy tool for GTM.
Proceedings of the Korea Information Processing Society Conference
/
2005.11a
/
pp.1137-1140
/
2005
기존의 방대한 무선 인프라와 최근 이동 단말기의 발달로 무선통신 기술을 이용한 서비스 이용이 잦아졌으며, 이를 관리하기 위해 기존의 모니터링 시스템들은 표준화되지 않은 지리 정보 속성을 바탕으로 단일 이동 단말기에서만 적용 되었다. 따라서 표준화된 GIS(Geographic Information System)에서 이동하는 여러 개의 무선 시스템을 효율적으로 관리하며 제어 할 수 있는 시스템이 필요하게 되었다. 본 논문은 WIPI(Wireless Internet Platform for Interoperability)에서 제공되는 GML(Geography Markup Language) 위치 정보 시스템을 서버에서 통합 추적 할 수 있는 모니터링 시스템을 설계한다. 또한 이 시스템은 OGC(Open GIS Consortium)에서 제안한 GML 3.1을 기반으로, 여러 WIPI 사용자들의 공간 정보를 획득 및 저장하여 이를 추적 관리 할 수 있다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.