• 제목/요약/키워드: GRU Model

검색결과 135건 처리시간 0.023초

하천 수위 예측 모델을 위한 기상 데이터 비교 연구 (Comparative study of meteorological data for river level prediction model)

  • 조민우;윤진욱;김창수;정회경
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2022년도 춘계학술대회
    • /
    • pp.491-493
    • /
    • 2022
  • 세계 각지에서 집중호우, 태풍 등으로 인한 홍수 피해가 많이 발생하고 있으며, 이러한 피해를 줄이기 위해 홍수를 미리 예측하는 것은 수해 피해 관리 차원에서 필수적인 요소이다. 본 논문에서는 홍수예측을 위한 핵심 파라미터인 수위, 강수량, 그리고 습도 데이터를 입력 데이터로 활용한 수위 예측 모델을 제안한다. 많은 연구 분야에서 이미 시계열 데이터 예측 성능이 검증된 LSTM 및 GRU 모델을 기반으로 기상청에서 제공하는 종관기상관측 자료와, 방재기상관측 자료를 활용하여 입력 데이터셋을 다르게 구축하고, 성능 비교 실험을 진행하였다. 결과적으로 종관기상관측 자료를 사용했을 때 가장 좋은 결과를 얻었다. 본 논문을 통해 입력 데이터에 따른 성능 비교 실험을 진행하였고, 향후 연구로 홍수 위험도 판별 모델과 연계하여 사전에 대피 결정이 가능한 시스템 개발의 초기 연구로서 활용될 수 있을 것으로 사료된다.

  • PDF

Design and Implementation of AI Recommendation Platform for Commercial Services

  • Jong-Eon Lee
    • International journal of advanced smart convergence
    • /
    • 제12권4호
    • /
    • pp.202-207
    • /
    • 2023
  • In this paper, we discuss the design and implementation of a recommendation platform actually built in the field. We survey deep learning-based recommendation models that are effective in reflecting individual user characteristics. The recently proposed RNN-based sequential recommendation models reflect individual user characteristics well. The recommendation platform we proposed has an architecture that can collect, store, and process big data from a company's commercial services. Our recommendation platform provides service providers with intuitive tools to evaluate and apply timely optimized recommendation models. In the model evaluation we performed, RNN-based sequential recommendation models showed high scores.

딥러닝 기법을 활용한 컨테이너선 운임 예측 모델 (Estimation Model for Freight of Container Ships using Deep Learning Method)

  • 김동균;최정석
    • 해양환경안전학회지
    • /
    • 제27권5호
    • /
    • pp.574-583
    • /
    • 2021
  • 해운 시황을 예측하는 것은 중요한 문제이다. 투자 방식의 결정, 선대 편성 방법, 운임 등을 결정하기 위한 판단 근거가 되며 이는 기업의 이익과 생존에 큰 영향을 미치기 때문이다. 이를 위해 본 연구에서는 기계학습 모델인 장단기 메모리 및 간소화된 장단기 메모리 구조의 Gated Recurrent Units를 활용하여 컨테이너선의 해상운임 예측 모델을 제안한다. 운임 예측 대상은 중국 컨테이너 운임지수(CCFI)이며, 2003년 3월부터 2020년 5월까지의 CCFI 데이터를 학습에 사용하였다. 각 모델에 따라 2020년 6월 이후의 CCFI를 예측한 후 실제 CCFI와 비교, 분석하였다. 실험 모델은 하이퍼 파라메터의 설정에 따라 총 6개의 모델을 설계하였다. 또한 전통적인 분석 방법과의 성능을 비교하기 위해 ARIMA 모델도 실험에 추가하였다. 최적 모델은 두 가지 방법에 따라 선정하였다. 첫 번째 방법으로 각 모델을 10회 반복 실험하여 얻은 RMSE의 평균값이 가장 작은 모델을 선정하는 것이다. 두 번째 방법으로는 모든 실험에서 가장 낮은 RMSE를 기록한 모델을 선정하는 것이다. 실험 결과 전통적 시계열 예측모델인 ARIMA 모델과 비교하여 딥러닝 모델의 정확도를 입증하였으며, 정확한 예측모델을 통해 운임 변동의 위험관리 능력을 제고시키는데 기여했다. 반면 코로나19와 같은 외부 효과에 따른 운임의 급격한 변화상황이 발생한 경우, 예측모델의 정확도가 감소하는 한계점을 나타냈다. 제안된 모델 중 GRU1 모델이 두 가지 평가 방법 모두에서 가장 낮은 RMSE(69.55, 49.35)를 기록하며 최적 모델로 선정되었다.

수온 데이터 예측 연구를 위한 통계적 방법과 딥러닝 모델 적용 연구 (Statistical Method and Deep Learning Model for Sea Surface Temperature Prediction)

  • 조문원;최흥배;한명수;정은송;강태순
    • 해양환경안전학회지
    • /
    • 제29권6호
    • /
    • pp.543-551
    • /
    • 2023
  • 기후변화 영향으로 이상고수온, 태풍, 홍수, 가뭄 등 재난 및 안전 관리기술은 지속적으로 고도화를 요구받고 있으며, 특히 해수면 온도는 한반도 주변에서 발생되는 여름철 적조 발생과 동해안 냉수대 출현, 소멸 등에 영향을 신속하게 분석할 수 있는 중요한 인자이다. 따라서, 본 연구에서는 해수면 온도 자료를 해양 이상현상 및 연구에 적극 활용되기 위해 통계적 방법과 딥러닝 알고리즘을 적용하여 예측성능을 평가하였다. 예측에 사용된 해수면 수온자료는 흑산도 조위관측소의 2018년부터 2022년까지 자료이며, 기존 통계적 ARIMA 방법과 Long Short-Term Memory(LSTM), Gated Recurrent Unit(GRU)을 사용하였고, LSTM의 성능을 더욱 향상할 수 있는 Sequence-to-Sequence(s2s) 구조에 Attention 기법을 추가한 Attention Long Short-Term Memory (LSTM)기법을 사용하여 예측 성능 평가를 진행하였다. 평가 결과 Attention LSTM 모델이 타 모델과 비교하여 더 좋은 성능을 보였으며, Hyper parameter 튜닝을 통해 해수면 수온 성능을 개선할 수 있었다.

Causal temporal convolutional neural network를 이용한 변동성 지수 예측 (Forecasting volatility index by temporal convolutional neural network)

  • 신지원;신동완
    • 응용통계연구
    • /
    • 제36권2호
    • /
    • pp.129-139
    • /
    • 2023
  • 변동성의 예측은 자산의 리스크에 대비하는 데에 중요한 역할을 하기때문에 필수적이다. 인공지능을 통하여 이러한 복잡한 특성을 지닌 변동성 예측을 시도하였는데 기존 시계열 예측에 적합하다 알려진 LSTM (1997)과 GRU (2014)은 기울기 소실로 인한 문제, 방대한 연산량의 문제, 그로 인한 메모리양의 문제 등이 존재하였다. 변동성 데이터는 비정상성(non-stationarity)과 정상성(stationarity)을 모두 가지고 있는 특성이 있으며, 자산 가격 하방 쇼크에 더 큰 폭으로 상승하는 비대칭성과 상당한 장기 기억성, 시장에 큰 사건이 발생할 때 기존의 값들에 비해 이상치라 할 수 있을 정도의 예측할 수 없는 큰 값이 발생하는 특성들이 존재한다. 이렇게 여러 가지 복잡한 특성들은 하나의 모형으로 구조화되기 어려워서 전통적인 방식의 모형으로는 변동성에 대한 예측력을 높이기 어려운 면이 있다. 이러한 문제를 해결하기 위해 1D CNN의 발전된 형태인 causal TCN (causal temporal convolutional network) 모형을 변동성 예측에 적용하고, 예측력을 최대화 할 수 있는 TCN 구조를 설계하고자 하였다. S&P 500, DJIA, Nasdaq 지수에 해당하는 변동성 지수 VIX, VXD, and VXN, 에 대하여 예측력 비교를 하였으며, TCN 모형이 RNN 계열의 모형보다도 전반적으로 예측력이 높음을 확인하였다.

기계학습 알고리즘을 이용한 스마트 온실 내부온도 예측 모델 개발 및 검증 (Development and Verification of Smart Greenhouse Internal Temperature Prediction Model Using Machine Learning Algorithm)

  • 오광철;김석준;박선용;이충건;조라훈;전영광;김대현
    • 생물환경조절학회지
    • /
    • 제31권3호
    • /
    • pp.152-162
    • /
    • 2022
  • 본 연구는 데이터를 기반으로 한 인공지능 기계학습 기법을 활용하여 온실 내부온도 예측 시뮬레이션 모델을 개발을 수행하였다. 온실 시스템의 내부온도 예측을 위해서 다양한 방법이 연구됐지만, 가외 변인으로 인하여 기존 시뮬레이션 분석방법은 낮은 정밀도의 문제점을 지니고 있다. 이러한 한계점을 극복하기 위하여 최근 개발되고 있는 데이터 기반의 기계학습을 활용하여 온실 내부온도 예측 모델 개발을 수행하였다. 기계학습모델은 데이터 수집, 특성 분석, 학습을 통하여 개발되며 매개변수와 학습방법에 따라 모델의 정확도가 크게 변화된다. 따라서 데이터 특성에 따른 최적의 모델 도출방법이 필요하다. 모델 개발 결과 숨은층 증가에 따라 모델 정확도가 상승하였으며 최종적으로 GRU 알고리즘과 숨은층6에서 r2 0.9848과 RMSE 0.5857℃로 최적 모델이 도출되었다. 본 연구를 통하여 온실 외부 데이터를 활용하여 온실 내부온도 예측 모델 개발이 가능함을 검증하였으며, 추후 다양한 온실데이터에 적용 및 비교분석이 수행되어야 한다. 이후 한 단계 더 나아가 기계학습모델 예측(predicted) 결과를 예보(forecasting)단계로 개선하기 위해서 데이터 시간 길이(sequence length)에 따른 특성 분석 및 계절별 기후변화와 작물에 따른 사례별로 개발 모델을 관리하는 등의 다양한 추가 연구가 수행되어야 한다.

경기종합지수 보완을 위한 AI기반의 합성보조지수 연구 (A Study on AI-based Composite Supplementary Index for Complementing the Composite Index of Business Indicators)

  • 정낙현;오태연;김강희
    • 품질경영학회지
    • /
    • 제51권3호
    • /
    • pp.363-379
    • /
    • 2023
  • Purpose: The main objective of this research is to construct an AI-based Composite Supplementary Index (ACSI) model to achieve accurate predictions of the Composite Index of Business Indicators. By incorporating various economic indicators as independent variables, the ACSI model enables the prediction and analysis of both the leading index (CLI) and coincident index (CCI). Methods: This study proposes an AI-based Composite Supplementary Index (ACSI) model that leverages diverse economic indicators as independent variables to forecast leading and coincident economic indicators. To evaluate the model's performance, advanced machine learning techniques including MLP, RNN, LSTM, and GRU were employed. Furthermore, the study explores the potential of employing deep learning models to train the weights associated with the independent variables that constitute the composite supplementary index. Results: The experimental results demonstrate the superior accuracy of the proposed composite supple- mentary index model in predicting leading and coincident economic indicators. Consequently, this model proves to be highly effective in forecasting economic cycles. Conclusion: In conclusion, the developed AI-based Composite Supplementary Index (ACSI) model successfully predicts the Composite Index of Business Indicators. Apart from its utility in management, economics, and investment domains, this model serves as a valuable indicator supporting policy-making and decision-making processes related to the economy.

Network Intrusion Detection Using Transformer and BiGRU-DNN in Edge Computing

  • Huijuan Sun
    • Journal of Information Processing Systems
    • /
    • 제20권4호
    • /
    • pp.458-476
    • /
    • 2024
  • To address the issue of class imbalance in network traffic data, which affects the network intrusion detection performance, a combined framework using transformers is proposed. First, Tomek Links, SMOTE, and WGAN are used to preprocess the data to solve the class-imbalance problem. Second, the transformer is used to encode traffic data to extract the correlation between network traffic. Finally, a hybrid deep learning network model combining a bidirectional gated current unit and deep neural network is proposed, which is used to extract long-dependence features. A DNN is used to extract deep level features, and softmax is used to complete classification. Experiments were conducted on the NSLKDD, UNSWNB15, and CICIDS2017 datasets, and the detection accuracy rates of the proposed model were 99.72%, 84.86%, and 99.89% on three datasets, respectively. Compared with other relatively new deep-learning network models, it effectively improved the intrusion detection performance, thereby improving the communication security of network data.

Cross-Domain Text Sentiment Classification Method Based on the CNN-BiLSTM-TE Model

  • Zeng, Yuyang;Zhang, Ruirui;Yang, Liang;Song, Sujuan
    • Journal of Information Processing Systems
    • /
    • 제17권4호
    • /
    • pp.818-833
    • /
    • 2021
  • To address the problems of low precision rate, insufficient feature extraction, and poor contextual ability in existing text sentiment analysis methods, a mixed model account of a CNN-BiLSTM-TE (convolutional neural network, bidirectional long short-term memory, and topic extraction) model was proposed. First, Chinese text data was converted into vectors through the method of transfer learning by Word2Vec. Second, local features were extracted by the CNN model. Then, contextual information was extracted by the BiLSTM neural network and the emotional tendency was obtained using softmax. Finally, topics were extracted by the term frequency-inverse document frequency and K-means. Compared with the CNN, BiLSTM, and gate recurrent unit (GRU) models, the CNN-BiLSTM-TE model's F1-score was higher than other models by 0.0147, 0.006, and 0.0052, respectively. Then compared with CNN-LSTM, LSTM-CNN, and BiLSTM-CNN models, the F1-score was higher by 0.0071, 0.0038, and 0.0049, respectively. Experimental results showed that the CNN-BiLSTM-TE model can effectively improve various indicators in application. Lastly, performed scalability verification through a takeaway dataset, which has great value in practical applications.

A Comparative study on smoothing techniques for performance improvement of LSTM learning model

  • Tae-Jin, Park;Gab-Sig, Sim
    • 한국컴퓨터정보학회논문지
    • /
    • 제28권1호
    • /
    • pp.17-26
    • /
    • 2023
  • 본 연구논문에서는 LSTM 기반의 학습 모델 적용과 그 효용성을 높일 수 있도록 몇 가지 평활 기법을 비교, 적용하고자 한다. 적용된 평활 기법은 Savitky-Golay, 지수 평활법, 가중치 이동 평균 등이다. 본 연구를 통해 비트코인 데이터에 LSTM모델 적용 시 보여준 결과 값보다 전처리 과정에서 적용된 Savitky-Golay 필터가 적용된 LSTM 알고리즘이 예측 성능에 유의미한 좋은 결과를 보였다. 예측 성능 결과를 확인하기 위해 비트코인 가격 예측에 따른 복잡 요인을 제거하는데 사용된 LSTM의 경우와 Savitzky-Golay LSTM 모델에 따른 학습 손실율과 검증 손실율을 비교하고 그 신뢰성을 높일 수 있도록 20회 평균값으로 실험하였다. 그 결과 (3.0556, 0.00005), (1.4659, 0.00002)의 값을 얻을 수 있었다. 결과적으로는 비트코인과 같은 암호화폐가 주식보다 더한 변동성을 가지는 만큼 데이터 전처리 과정에서 평활 기법(Savitzky-Golay)을 적용하여 잡음(Noise)을 제거하였으며, 전처리 후의 데이터는 LSTM 신경망 학습을 통해서 비트코인 예측률을 높이는데 가장 유의미한 결과를 얻을 수 있었다.