• 제목/요약/키워드: GRD

검색결과 31건 처리시간 0.019초

무인비행장치용 측량 및 관측용 탑재 카메라의 최적화 조건 연구 (A Study on the Optimization Conditions for the Mounted Cameras on the Unmanned Aerial Vehicles(UAV) for Photogrammetry and Observations)

  • 이희우;손호웅;김태훈
    • 한국산업융합학회 논문집
    • /
    • 제26권6_2호
    • /
    • pp.1063-1071
    • /
    • 2023
  • Unmanned aerial vehicles (UAVs, drones) are becoming increasingly useful in a variety of fields. Advances in UAV and camera technology have made it possible to equip them with ultra-high resolution sensors and capture images at low altitudes, which has improved the reliability and classification accuracy of object identification on the ground. The distinctive contribution of this study is the derivation of sensor-specific performance metrics (GRD/GSD), which shows that as the GSD increases with altitude, the GRD value also increases. In this study, we identified the characteristics of various onboard sensors and analysed the image quality (discrimination resolution) of aerial photography results using UAVs, and calculated the shooting conditions to obtain the discrimination resolution required for reading ground objects.

맥동전자장이 고지혈증 흰쥐의 혈액 성분, 항산화 효소 및 활성 산소에 미치는 영향 (The Effects of Pulsed Electromagnetic Fields on Blood components, Antioxidant enzymes and Reactive Oxygen in Hyperlipidemic Rats)

  • 방현수;정인호;이상덕
    • 디지털융복합연구
    • /
    • 제12권7호
    • /
    • pp.349-356
    • /
    • 2014
  • 본 연구는 맥동전자장이 고지혈증 관련 혈액 성분, 항산화 효소와 활성 산소에 어떠한 영향을 미치는 지를 관찰하기 위하여 실시하였다. 실험군은 정상식이군, 고지방식이군과 고지방식이-맥동전자장 적용군의 3군으로 나누었다. 맥동 전자장은 맥동 전자장 에너지 치료기를 이용하였다. 혈액 성분의 검사 항목은 혈당, 유리지방산, 중성지방 및 콜레스테롤, 인슐린이고, 항산화 효소와 활성 산소의 검사는 글루타치온, 글루타치온 환원효소, 크산틴, 과산화지질을 측정하였다. 그 결과 맥동전자장 적용은 혈액 구성성분과 GSH와 GRD를 고지장식이 수준에서 정상식이 수준으로 상승시켰으며, XO와 MDA는 고지방식이 수준에서 정상 식이 수준으로 낮추어 주는 개선효과를 나타내었다. 그러므로 맥동전자장의 적용은 고지혈증 흰쥐의 혈액성분의 변화, 항산화 효소의 증가, 활성 산화의 억제에 효과적인 치료 방법이라 할 수 있다.

Correlation between the Content and Pharmacokinetics of Ginsenosides from Four Different Preparation of Panax Ginseng C.A. Meyer in Rats

  • Jeon, Ji-Hyeon;Lee, Jaehyeok;Lee, Chul Haeng;Choi, Min-Koo;Song, Im-Sook
    • Mass Spectrometry Letters
    • /
    • 제12권1호
    • /
    • pp.16-20
    • /
    • 2021
  • We aimed to compare the content of ginsenosides and the pharmacokinetics after the oral administration of four different ginseng products at a dose of 1 g/kg in rats. The four different ginseng products were fresh ginseng extract, red ginseng extract, white ginseng extract, and saponin enriched white ginseng extract prepared from the radix of Panax ginseng C.A. Meyer. The ginsenoside concentrations in the ginseng product and the rat plasma samples were determined using a liquid chromatography-tandem mass spectrometry (LC-MS/MS). Eight or nine ginsenosides of the 15 tested ginsenosides were detected; however, the content and total ginsenosides varied depending on the preparation method. Moreover, the content of triglycosylated ginsenosides was higher than that of diglycosylated ginsenosides, and deglycosylated ginsenosides were not present in any preparation. After the single oral administrations of four different ginseng products in rats, only four ginsenosides, such as 20(S)-ginsenosides Rb1 (GRb1), GRb2, GRc, and GRd, were detected in the rat plasma samples among the 15 ginsenosides tested. The plasma concentrations of GRb1, GRb2, GRc, and GRd were different depends on the preparation method but pharmacokinetic features of the four ginseng products were similar. In conclusion, a good correlation between the area under the concentration curve and the content of GRb1, GRb2, and GRc, but not GRd, in the ginseng products was identified and it might be the result of their higher content and intestinal biotransformation of the ginseng product.

Prevention of Alloxan-induced Diabetes by Se-Methylselenocysteine Pretreatment in Rats: The Effect on Antioxidant System in Pancreas

  • Nam, Tack-Il;Park, Jung-Jin;Choi, Eun-Mi
    • Preventive Nutrition and Food Science
    • /
    • 제14권2호
    • /
    • pp.95-101
    • /
    • 2009
  • In this study, we assessed the effects of Se-methylselenocysteine (MSC) pretreatment on the antioxidant system in the pancreas and the development of alloxan-induced diabetes in rats. The rats were treated with MSC at a dose of 0.75 mg/rat/day for 2 weeks. The MSC-treated rats evidenced significantly increased glutathione content, GSH/GSSG ratio, and glutathione peroxidase (GPx) and glutathione reductase (GRd) activities in the pancreas. Diabetes was induced via alloxan injection. The alloxan-diabetic rats evidenced significantly reduced glutathione content and glucose 6-phosphate dehydrogenase (G6PD) activity and increased catalase activity in the pancreas, when measured 3 days after the alloxan injection. 2-week MSC pretreatment was shown to prevent the alloxan-induced hyperglycemia as well as changes in glutathione content, G6PD activity, and catalase activity. The results of this study indicate that the prevention of alloxan-diabetes by MSC pretreatment is associated with its effects on antioxidants in the pancreas, namely, the increase in cellular content and the reduction of glutathione by the facilitation of glutathione recycling induced via increased GPx, GRd, and G6PD activities.

담배연기 농축액 처리에 의해 유도된 사람 기관지 상피세포주의 Hypoxia-Reoxygenation에 대한 민감성 (Susceptibility of Cigarette Smoke Condensate-Exposed Human Bronchial Epithelial Cells to Hypoxia-Reoxygenation)

  • 이인자;최은미
    • Environmental Analysis Health and Toxicology
    • /
    • 제24권1호
    • /
    • pp.53-61
    • /
    • 2009
  • 사람 기관지상피세포주인 BEAS-2B에 담배연기농축액(CSC)을 처리하여 유도된 1198 세포주는 대조군 세포주인 1799에 비해 현저하게 낮은 glutathione 농도와 낮은 glutamate-cysteine ligase(GCL), glutathione peroxidase(GPx), glucose-6-phosphate dehydrogenase(G6PD), catalase 효소활성을 보였다. 두 세포주를 포도당 존재 하에서 4시간 hypoxia 처리 후 reoxygenation 하면서 시간에 따른 세포의 항산화계 활성을 측정한 결과, 1799 세포주에서는 의미 있는 변화가 관찰되지 않은 반면, 1198 세포주에서는 hypoxia 처리에 의해 glutathione의 농도 및 GSH/GSSG 비와 G6PD 활성이 감소되었고, reoxygenation 기에는 GPx, glutathione reductase(GRd), G6PD, superoxide dismutase 활성이 감소되었다. 그러나 reoxygenation 2시간 이후에는 GRd와 G6PD 활성의 회복이 관찰되었으며, 그 결과 GSH/GSSG 비율이 회복되었다. 이 실험 결과는 CSC가 능력을 현저히 저하시킬 수 있음을 보여준다. Glutathione은 hypoxia-reoxygenation에 의한 산화적 스트레스 하에서 항산화제로서의 역할뿐 아니라, 세포 내 GSH/GSSG 비의 변화를 통해 산화적 스트레스에 대한 항산화계의 적응 반응 여부를 결정하는 중요한 인자로 작용할 것으로 보여진다.

Oxidative Stress and Antioxidant Activities of Intertidal Macroalgae in Korea

  • Park, Jung-Jin;Han, Tae-Jun;Choi, Eun-Mi
    • Preventive Nutrition and Food Science
    • /
    • 제16권4호
    • /
    • pp.313-320
    • /
    • 2011
  • The oxidative stress level and antioxidant activities in two green algae (Ulva pertusa and Ulva linza), two brown algae (Agarum cribrosum and Dictyota dichotoma), and three red algae (Grateloupia lanceolata, Carpopeltis affinis, and Gracilaria verrucosa) collected from intertidal regions of Korea were assessed. In the two green algae, although the total glutathione content was not as high as that of the brown algae, the glutathione pool was extremely reduced, and the glutathione reductase (GRd)/glutathione peroxidase (GPx) activity ratio was high, which apparently plays an important role for protection against oxidative damage, as manifested by low lipid peroxidation. In the brown algae, which exhibited a low lipid peroxidation level that was comparable to the green algal species, the highest glutathione content, together with high GPx activity, appears to be the most important factor in their antioxidant protection. The red algal species exhibited extremely high lipid peroxidation levels. They also contained the lowest and most oxidized glutathione among the species, as well as the lowest GRd activity. In spite of the marked difference in the glutathione content, the significant difference in the activity of ${\gamma}$-glutamylcysteine ligase, the rate limiting enzyme for glutathione synthesis, among the species was not exhibited. Our results suggest that there is a significant difference in the levels of oxidative stress and antioxidant capacity among the algal species, and that the glutathione system, especially the efficiency of glutathione recycling, plays a vital role in antioxidative protection in algal species.

Identification of the mechanism for dehalorespiration of monofluoroacetate in the phylum Synergistota

  • Lex E. X. Leong;Stuart E. Denman;Seungha Kang;Stanislas Mondot;Philip Hugenholtz;Chris S. McSweeney
    • Animal Bioscience
    • /
    • 제37권2_spc호
    • /
    • pp.396-403
    • /
    • 2024
  • Objective: Monofluoroacetate (MFA) is a potent toxin that blocks ATP production via the Krebs cycle and causes acute toxicity in ruminants consuming MFA-containing plants. The rumen bacterium, Cloacibacillus porcorum strain MFA1 belongs to the phylum Synergistota and can produce fluoride and acetate from MFA as the end-products of dehalorespiration. The aim of this study was to identify the genomic basis for the metabolism of MFA by this bacterium. Methods: A draft genome sequence for C. porcorum strain MFA1 was assembled and quantitative transcriptomic analysis was performed thus highlighting a candidate operon encoding four proteins that are responsible for the carbon-fluorine bond cleavage. Comparative genome analysis of this operon was undertaken with three other species of closely related Synergistota bacteria. Results: Two of the genes in this operon are related to the substrate-binding components of the glycine reductase protein B (GrdB) complex. Glycine shares a similar structure to MFA suggesting a role for these proteins in binding MFA. The remaining two genes in the operon, an antiporter family protein and an oxidoreductase belonging to the radical S-adenosyl methionine superfamily, are hypothesised to transport and activate the GrdB-like protein respectively. Similar operons were identified in a small number of other Synergistota bacteria including type strains of Cloacibacillus porcorum, C. evryensis, and Pyramidobacter piscolens, suggesting lateral transfer of the operon as these genera belong to separate families. We confirmed that all three species can degrade MFA, however, substrate degradation in P. piscolens was notably reduced compared to Cloacibacillus isolates possibly reflecting the loss of the oxidoreductase and antiporter in the P. piscolens operon. Conclusion: Identification of this unusual anaerobic fluoroacetate metabolism extends the known substrates for dehalorespiration and indicates the potential for substrate plasticity in amino acid-reducing enzymes to include xenobiotics.

Anticonvulsant potential of some traditional medicinal plants

  • Asif, Mohammad
    • 셀메드
    • /
    • 제4권1호
    • /
    • pp.1.1-1.13
    • /
    • 2014
  • Epilepsy has now become the most serious brain disorder. A number of synthetic antiepileptic drugs are available in practice, however their effectiveness does not grip true with the entire population suffering from epilepsy. Traditional systems of medicine are popular in developing countries and most of the population relies on traditional medicines for their primary health care need. Medicinal plants to be an important source of traditional medicines. Various plants are used for the treatment of epilepsy in traditional system of medicines and various plants are yet to be scientifically investigated. Phyto-constituents have been the basis of treatment of human diseases including epilepsy. Herbal products are extensively used for the treatment of many diseases worldwide and where allopathic fails or has severe side effects. Psycho neural drugs are also have very serious side effects like physical dependence, tolerance, deterioration of cognitive function and effect on respiratory, digestive and immune system. So the treatments through herbal medicines are widely used across the world due to their wide applicability and therapeutic efficacy with least side effects, which in turn has accelerated the research regarding natural therapy. In this review we have summarized some herbal anti-epileptics.

Anticonvulsant potential of some medicinal plants and their beneficial properties

  • Asif, Mohammad
    • 셀메드
    • /
    • 제3권4호
    • /
    • pp.27.1-27.13
    • /
    • 2013
  • Epilepsy has now become the most serious brain disorder. A number of synthetic antiepileptic drugs are available in practice, however their effectiveness does not grip true with the entire population suffering from epilepsy. Traditional systems of medicine are popular in developing countries and most of the population relies on traditional medicines for their primary health care need. Medicinal plants to be an important source of traditional medicines. Various plants are used for the treatment of epilepsy in traditional system of medicines and various plants are yet to be scientifically investigated. Phytoconstituents have been the basis of treatment of human diseases including epilepsy. Herbal products are extensively used for the treatment of many diseases worldwide and where allopathic fails or has severe side effects. Psycho neural drugs are also have very serious side effects like physical dependence, tolerance, deterioration of cognitive function and effect on respiratory, digestive and immune system. So the treatments through herbal medicines are widely used across the world due to their wide applicability and therapeutic efficacy with least side effects, which in turn has accelerated the research regarding natural therapy. In this review we have summarized some herbal antiepileptics.

Biologically active compounds from natural and marine natural organisms with antituberculosis, antimalarial, leishmaniasis, trypanosomiasis, anthelmintic, antibacterial, antifungal, antiprotozoal, and antiviral activities

  • Asif, Mohammad
    • 셀메드
    • /
    • 제6권4호
    • /
    • pp.22.1-22.19
    • /
    • 2016
  • The biologically active compounds derived from different natural organisms such as animals, plants, and microorganisms like algae, fungi, bacteria and merine organisms. These natural compounds possess diverse biological activities like anthelmintic, antibacterial, antifungal, antimalarial, antiprotozoal, antituberculosis, and antiviral activities. These biological active compounds were acted by variety of molecular targets and thus may potentially contribute to several pharmacological classes. The synthesis of natural products and their analogues provides effect of structural modifications on the parent compounds which may be useful in the discovery of potential new drug molecules with different biological activities. Natural organisms have developed complex chemical defense systems by repelling or killing predators, such as insects, microorganisms, animals etc. These defense systems have the ability to produce large numbers of diverse compounds which can be used as new drugs. Thus, research on natural products for novel therapeutic agents with broad spectrum activities and will continue to provide important new drug molecules.