• Title/Summary/Keyword: GPU process

Search Result 148, Processing Time 0.038 seconds

The Need of Cache Partitioning on Shared Cache of Integrated Graphics Processor between CPU and GPU (내장형 GPU 환경에서 CPU-GPU 간의 공유 캐시에서의 캐시 분할 방식의 필요성)

  • Sung, Hanul;Eom, Hyeonsang;Yeom, HeonYoung
    • KIISE Transactions on Computing Practices
    • /
    • v.20 no.9
    • /
    • pp.507-512
    • /
    • 2014
  • Recently, Distributed computing processing begins using both CPU(Central processing unit) and GPU(Graphic processing unit) to improve the performance to overcome darksilicon problem which cannot use all of the transistors because of the electric power limitation. There is an integrated graphics processor that CPU and GPU share memory and Last level cache(LLC). But, There is no LLC access rules between CPU and GPU, so if GPU and CPU processes run together at the same time, performance of both processes gets worse because of the contention on the LLC. This Paper gives evidence to prove the need of the Cache Partitioning and is mentioned about the cache partitioning design using page coloring to allocate the L3 Cache space only for the GPU process to guarantee GPU process performance.

A Execution Performance Analysis of Applications using Multi-Process Service over GPU (다중 프로세스 서비스를 이용한 GPU 응용 동시 실행 성능 분석)

  • Kim, Se-Jin;Oh, Ji-Sun;Kim, Yoonhee
    • KNOM Review
    • /
    • v.22 no.1
    • /
    • pp.60-67
    • /
    • 2019
  • Graphical Processing Units(GPUs) achieve high performance undertaking from relatively uniformed computation in parallel. The technology related to General Purpose GPU(GPGPU) has been enhanced, which provides concurrent kernel execution of multi and diverse applications at the same time, but it is still limited to support resource sharing or planning. NVIDIA recently introduces Multi-Process Service(MPS), which allows kernels from different applications can be execute concurrently. However, the strength of MPS comes along with the characteristics of applications and the order of their execution. This paper shows the performance analysis of diverse scientific applications in real world. Based on the analysis, we prove that it is important to the identify characteristics of co-run applications, and to schedule multiple applications via profiling to maximize MPS functionality.

GPU Memory Management Technique to Improve the Performance of GPGPU Task of Virtual Machines in RPC-Based GPU Virtualization Environments (RPC 기반 GPU 가상화 환경에서 가상머신의 GPGPU 작업 성능 향상을 위한 GPU 메모리 관리 기법)

  • Kang, Jihun
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.10 no.5
    • /
    • pp.123-136
    • /
    • 2021
  • RPC (Remote Procedure Call)-based Graphics Processing Unit (GPU) virtualization technology is one of the technologies for sharing GPUs with multiple user virtual machines. However, in a cloud environment, unlike CPU or memory, general GPUs do not provide a resource isolation technology that can limit the resource usage of virtual machines. In particular, in an RPC-based virtualization environment, since GPU tasks executed in each virtual machine are performed in the form of multi-process, the lack of resource isolation technology causes performance degradation due to resource competition. In addition, the GPU memory competition accelerates the performance degradation as the resource demand of the virtual machines increases, and the fairness decreases because it cannot guarantee equal performance between virtual machines. This paper, in the RPC-based GPU virtualization environment, analyzes the performance degradation problem caused by resource contention when the GPU memory requirement of virtual machines exceeds the available GPU memory capacity and proposes a GPU memory management technique to solve this problem. Also, experiments show that the GPU memory management technique proposed in this paper can improve the performance of GPGPU tasks.

Implementation of Viterbi Decoder on Massively Parallel GPU for DVB-T Receiver (DVB-T 수신기를 위한 대규모 병렬처리 GPU 기반의 비터비 복호기 구현)

  • Lee, KyuHyung;Lee, Ho-Kyoung;Heo, Seo Weon
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.9
    • /
    • pp.3-11
    • /
    • 2013
  • Recently, a plenty of researches have been conducted using the massively parallel processing of GPU for the implementation of communication system. In this paper, we tried to reduce software simulation time applying GPU with sliding block method to Viterbi decoder in DVB-T system which is one of European DTV standards. First of all, we implement DVB-T system by CPU and estimate cost time whereby the system processes one OFDM symbol. Secondly, we implement Viterbi decoder by software using NVIDIA's massive GPU processor. In our work, stream process method is applied to reduce the overhead for data transfer between CPU and GPU, as well as coalescing method to lower the global memory access time. In addition, data structure design method is used to maximize the shared memory usage. Consequently, our proposed method is approximately 11 times faster in 2K mode and 60 times faster in 8K mode for the process in Viterbi decoder.

Designing Hybrid Sorting Algorithm for PC with GPU (GPU가 장착된 PC를 위한 혼합 정렬 알고리즘 설계)

  • Kwon, Oh-Young
    • Journal of Advanced Navigation Technology
    • /
    • v.15 no.2
    • /
    • pp.281-286
    • /
    • 2011
  • Data sorting is one of important pre-process to utilize huge data in modern society, but sorting spends a lot of time by sorting itself. In this paper, we presented hybrid sorting algorithm that splits array to sort concurrently in CPU and GPU. To do this, we decided most effective range of array based on hardware performance, then accomplished reducing whole sorting time by concurrent sorting on CPU and GPU. As shown in results of experiment, hybrid sorting improved about eight percent of sorting time in comparison with the sorting time using only GPU.

Faster Fingerprint Matching Algorithm Using GPU (GPU를 이용한 보다 빠른 지문 인식 알고리즘)

  • Riaz, Sidra;Lee, Sang-Woong
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 2012.05a
    • /
    • pp.43-45
    • /
    • 2012
  • This paper is based on embedding the biometrics techniques on GPU for better computational efficiency and fast matching process using the parallel nature of the GPU processors to compare thousands of images for fingerprint recognition in a fraction of a second. In this paper we worked on GPU (INVIDIA GeForce GTX 260 with compute capability 1.3 and dual core-2-dou processor) for fingerprint matching and found that the efficiency is better than the results with related work already done on CMOS, CPU, ARM9, MATLAB Neural Networks etc which shows the better performance of our system in terms of computational time. The features matching process proposed for fingerprint recognition and the verification procedure is done on 5,000 images which are available online in the databases FVC2000, 2002, 2004 [1].

  • PDF

A Study On The Virtual Space Simulation Expression Using Graphic Process Unit (GPU를 활용한 공간 가상 시뮬레이션 표현에 관한 연구)

  • Kim, Jong-Hyun;Kim, Suk-Tae
    • Proceedings of the Korean Institute of Interior Design Conference
    • /
    • 2004.11a
    • /
    • pp.80-83
    • /
    • 2004
  • It is impossible to do real verification on design spaces before their completions due to the characteristics of building and interior space designs. So, in designing spaces, designers should reflect their real experiences in their lives into their design works. 3D games where GPU and other kinds of advanced technologies have bee applied first show their leads in technologies have bee applied first show their leads in technologies about 5 years than VRML. Those games which are produced reflecting real environment as it is could be regarded as the most excellent tool in their completeness level of physical environment due to their characteristics. This means that if 3D game engines employing GPU are used effectively they could be used as a presentation tool for virtual spaces. This study studies the expressions of virtual constructions through 3D game engines employing GPU, not in VRML-based virtual spaces on Webs but in immersion-type virtual spaces.

  • PDF

GPU Based Incremental Connected Component Processing in Dynamic Graphs (동적 그래프에서 GPU 기반의 점진적 연결 요소 처리)

  • Kim, Nam-Young;Choi, Do-Jin;Bok, Kyoung-Soo;Yoo, Jae-Soo
    • The Journal of the Korea Contents Association
    • /
    • v.22 no.6
    • /
    • pp.56-68
    • /
    • 2022
  • Recently, as the demand for real-time processing increases, studies on a dynamic graph that changes over time has been actively done. There is a connected components processing algorithm as one of the algorithms for analyzing dynamic graphs. GPUs are suitable for large-scale graph calculations due to their high memory bandwidth and computational performance. However, when computing the connected components of a dynamic graph using the GPU, frequent data exchange occurs between the CPU and the GPU during real graph processing due to the limited memory of the GPU. The proposed scheme utilizes the Weighted-Quick-Union algorithm to process large-scale graphs on the GPU. It supports fast connected components computation by applying the size to the connected component label. It computes the connected component by determining the parts to be recalculated and minimizing the data to be transmitted to the GPU. In addition, we propose a processing structure in which the GPU and the CPU execute asynchronously to reduce the data transfer time between GPU and CPU. We show the excellence of the proposed scheme through performance evaluation using real dataset.

Accurate and efficient GPU ray-casting algorithm for volume rendering of unstructured grid data

  • Gu, Gibeom;Kim, Duksu
    • ETRI Journal
    • /
    • v.42 no.4
    • /
    • pp.608-618
    • /
    • 2020
  • We present a novel GPU-based ray-casting algorithm for volume rendering of unstructured grid data. Our volume rendering system uses a ray-casting method that guarantees accurate rendering results. We also employ the per-pixel intersection list concept in the Bunyk algorithm to guarantee an accurate result for non-convex meshes. For efficient memory access for the lists on the GPU, we represent the intersection lists for all faces as an array with our novel construction algorithm. With the intersection lists, we perform ray-casting on a GPU, and a GPU thread handles each ray. To increase ray-coherency in a thread block and improve memory access efficiency, we extend a prior image-tile-based work distribution method to fit modern GPU architectures. We also show that a prior approach using a per-thread local buffer to reduce redundant computation is not appropriate for modern GPU architectures. Instead, we take an on-demand calculation strategy that achieves better performance even though it allows duplicate computations. We applied our method to three unstructured grid datasets with different characteristics. With a GPU, our method achieved up to 36.5 times higher performance for the ray-casting process and 19.7 times higher performance for the whole volume rendering process compared with the Bunyk algorithm using a CPU core. Also, our approach showed up to 8.2 times higher performance than a GPU-based cell projection method while generating more accurate rendering results. These results demonstrate the efficiency and accuracy of our method.

An Analytical Model for Performance Prediction of AES on GPU Architecture (GPU 아키텍처의 AES 암호화 성능 예측 분석 모델)

  • Kim, Kyuwoon;Kim, Hyunwoo;Kim, Huijeong;Huh, Taeyoung;Jung, Sanghyuk;Song, Yong Ho
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.4
    • /
    • pp.89-96
    • /
    • 2013
  • The graphic processor unit (GPU) has been developed to process not only graphic data but also general system data. It shows a better performance than CPU in algorithm for 3D graphics and parallel program. In order to execute algorithm for CPU on GPU, we should understand about GPU architectures and rewrite program considering parallel processing capability and new memory model of GPU. For this reasons, a performance prediction model for the algorithm and its predicted performance through GPU system are required. These can predict problems in GPU application development or construct a performance evaluation standard for GPU. In this paper, we applied the AES encryption algorithms on our performance model and accomplished performance prediction with high accuracy under a heavy workload.