• Title/Summary/Keyword: GPU 프로세스

Search Result 17, Processing Time 0.021 seconds

A Study on GPGPU Performance Improvement Technique on GCN Architecture Using OpenCL API (GCN 아키텍쳐 상에서의 OpenCL을 이용한 GPGPU 성능향상 기법 연구)

  • Woo, DongHee;Kim, YoonHo
    • The Journal of Society for e-Business Studies
    • /
    • v.23 no.1
    • /
    • pp.37-45
    • /
    • 2018
  • The current system upon which a variety of programs are in operation has continuously expanded its domain from conventional single-core and multi-core system to many-core and heterogeneous system. However, existing researches have focused mostly on parallelizing programs based CUDA framework and rarely on AMD based GCN-GPU optimization. In light of the aforementioned problems, our study focuses on the optimization techniques of the GCN architecture in a GPGPU environment and achieves a performance improvement. Specifically, by using performance techniques we propose, we have reduced more then 30% of the computation time of matrix multiplication and convolution algorithm in GPGPU. Also, we increase the kernel throughput by more then 40%.

A GPU-enabled Face Detection System in the Hadoop Platform Considering Big Data for Images (이미지 빅데이터를 고려한 하둡 플랫폼 환경에서 GPU 기반의 얼굴 검출 시스템)

  • Bae, Yuseok;Park, Jongyoul
    • KIISE Transactions on Computing Practices
    • /
    • v.22 no.1
    • /
    • pp.20-25
    • /
    • 2016
  • With the advent of the era of digital big data, the Hadoop platform has become widely used in various fields. However, the Hadoop MapReduce framework suffers from problems related to the increase of the name node's main memory and map tasks for the processing of large number of small files. In addition, a method for running C++-based tasks in the MapReduce framework is required in order to conjugate GPUs supporting hardware-based data parallelism in the MapReduce framework. Therefore, in this paper, we present a face detection system that generates a sequence file for images to process big data for images in the Hadoop platform. The system also deals with tasks for GPU-based face detection in the MapReduce framework using Hadoop Pipes. We demonstrate a performance increase of around 6.8-fold as compared to a single CPU process.

A Study on Efficient User Management System of Combat System

  • Hee-Soo Kim
    • Journal of the Korea Society of Computer and Information
    • /
    • v.29 no.7
    • /
    • pp.191-198
    • /
    • 2024
  • In this paper, we proposes a user management system for efficient operation of the combat system within naval ship. Recently, naval ships have seen performance enhancements through various sensors, features, and continuous system development. This progress in the system has led to an increase in multi-funstion consoles that can manipulate various sensors and features within naval ship, consequently increasing the number of operators for these consoles. Therefore, a user management system that can control and manage multi-function consoles and operators in real-time is necessary for efficient management within naval ship. This paper suggests a user management system that can effectively manage the real-time situation of users accessing multi-function consoles. Additionally, a parallelization method using GPUs to reduce the CPU workload in operating various functions of the combat system is proposed. The proposed user management system has shown a performance improvement where the response time decreased by approximately 82% and the occupancy reduced by approximately 20% compared to the method using CPUs.

Automatic gasometer reading system using selective optical character recognition (관심 문자열 인식 기술을 이용한 가스계량기 자동 검침 시스템)

  • Lee, Kyohyuk;Kim, Taeyeon;Kim, Wooju
    • Journal of Intelligence and Information Systems
    • /
    • v.26 no.2
    • /
    • pp.1-25
    • /
    • 2020
  • In this paper, we suggest an application system architecture which provides accurate, fast and efficient automatic gasometer reading function. The system captures gasometer image using mobile device camera, transmits the image to a cloud server on top of private LTE network, and analyzes the image to extract character information of device ID and gas usage amount by selective optical character recognition based on deep learning technology. In general, there are many types of character in an image and optical character recognition technology extracts all character information in an image. But some applications need to ignore non-of-interest types of character and only have to focus on some specific types of characters. For an example of the application, automatic gasometer reading system only need to extract device ID and gas usage amount character information from gasometer images to send bill to users. Non-of-interest character strings, such as device type, manufacturer, manufacturing date, specification and etc., are not valuable information to the application. Thus, the application have to analyze point of interest region and specific types of characters to extract valuable information only. We adopted CNN (Convolutional Neural Network) based object detection and CRNN (Convolutional Recurrent Neural Network) technology for selective optical character recognition which only analyze point of interest region for selective character information extraction. We build up 3 neural networks for the application system. The first is a convolutional neural network which detects point of interest region of gas usage amount and device ID information character strings, the second is another convolutional neural network which transforms spatial information of point of interest region to spatial sequential feature vectors, and the third is bi-directional long short term memory network which converts spatial sequential information to character strings using time-series analysis mapping from feature vectors to character strings. In this research, point of interest character strings are device ID and gas usage amount. Device ID consists of 12 arabic character strings and gas usage amount consists of 4 ~ 5 arabic character strings. All system components are implemented in Amazon Web Service Cloud with Intel Zeon E5-2686 v4 CPU and NVidia TESLA V100 GPU. The system architecture adopts master-lave processing structure for efficient and fast parallel processing coping with about 700,000 requests per day. Mobile device captures gasometer image and transmits to master process in AWS cloud. Master process runs on Intel Zeon CPU and pushes reading request from mobile device to an input queue with FIFO (First In First Out) structure. Slave process consists of 3 types of deep neural networks which conduct character recognition process and runs on NVidia GPU module. Slave process is always polling the input queue to get recognition request. If there are some requests from master process in the input queue, slave process converts the image in the input queue to device ID character string, gas usage amount character string and position information of the strings, returns the information to output queue, and switch to idle mode to poll the input queue. Master process gets final information form the output queue and delivers the information to the mobile device. We used total 27,120 gasometer images for training, validation and testing of 3 types of deep neural network. 22,985 images were used for training and validation, 4,135 images were used for testing. We randomly splitted 22,985 images with 8:2 ratio for training and validation respectively for each training epoch. 4,135 test image were categorized into 5 types (Normal, noise, reflex, scale and slant). Normal data is clean image data, noise means image with noise signal, relfex means image with light reflection in gasometer region, scale means images with small object size due to long-distance capturing and slant means images which is not horizontally flat. Final character string recognition accuracies for device ID and gas usage amount of normal data are 0.960 and 0.864 respectively.

Real-Time Copyright Security Scheme of Immersive Content based on HEVC (HEVC 기반의 실감형 콘텐츠 실시간 저작권 보호 기법)

  • Yun, Chang Seob;Jun, Jae Hyun;Kim, Sung Ho;Kim, Dae Soo
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.21 no.1
    • /
    • pp.27-34
    • /
    • 2021
  • In this paper, we propose a copyright protection scheme for real-time streaming of HEVC(High Efficiency Video Coding) based realistic content. Previous research uses encryption and modular operation for copyright pre-protection and copyright post-protection, which causes delays in ultra high resolution video. The proposed scheme maximizes parallelism by using thread pool based DRM(Digital Rights Management) packaging with only HEVC's CABAC(Context Adaptive Binary Arithmetic Coding) codec and GPU based high-speed bit operation(XOR), thus enabling real-time copyright protection. As a result of comparing this scheme with previous research at three resolutions, PSNR showed an average of 8 times higher performance, and the process speed showed an average of 18 times difference. In addition, as a result of comparing the robustness of the forensic mark, the filter and noise attack, which showed the largest and smallest difference, with a 27-fold difference in recompression attacks, showed an 8-fold difference.

Development of a SLAM System for Small UAVs in Indoor Environments using Gaussian Processes (가우시안 프로세스를 이용한 실내 환경에서 소형무인기에 적합한 SLAM 시스템 개발)

  • Jeon, Young-San;Choi, Jongeun;Lee, Jeong Oog
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.11
    • /
    • pp.1098-1102
    • /
    • 2014
  • Localization of aerial vehicles and map building of flight environments are key technologies for the autonomous flight of small UAVs. In outdoor environments, an unmanned aircraft can easily use a GPS (Global Positioning System) for its localization with acceptable accuracy. However, as the GPS is not available for use in indoor environments, the development of a SLAM (Simultaneous Localization and Mapping) system that is suitable for small UAVs is therefore needed. In this paper, we suggest a vision-based SLAM system that uses vision sensors and an AHRS (Attitude Heading Reference System) sensor. Feature points in images captured from the vision sensor are obtained by using GPU (Graphics Process Unit) based SIFT (Scale-invariant Feature Transform) algorithm. Those feature points are then combined with attitude information obtained from the AHRS to estimate the position of the small UAV. Based on the location information and color distribution, a Gaussian process model is generated, which could be a map. The experimental results show that the position of a small unmanned aircraft is estimated properly and the map of the environment is constructed by using the proposed method. Finally, the reliability of the proposed method is verified by comparing the difference between the estimated values and the actual values.

Development of small multi-copter system for indoor collision avoidance flight (실내 비행용 소형 충돌회피 멀티콥터 시스템 개발)

  • Moon, Jung-Ho
    • Journal of Aerospace System Engineering
    • /
    • v.15 no.1
    • /
    • pp.102-110
    • /
    • 2021
  • Recently, multi-copters equipped with various collision avoidance sensors have been introduced to improve flight stability. LiDAR is used to recognize a three-dimensional position. Multiple cameras and real-time SLAM technology are also used to calculate the relative position to obstacles. A three-dimensional depth sensor with a small process and camera is also used. In this study, a small collision-avoidance multi-copter system capable of in-door flight was developed as a platform for the development of collision avoidance software technology. The multi-copter system was equipped with LiDAR, 3D depth sensor, and small image processing board. Object recognition and collision avoidance functions based on the YOLO algorithm were verified through flight tests. This paper deals with recent trends in drone collision avoidance technology, system design/manufacturing process, and flight test results.