• Title/Summary/Keyword: GPU 공유

Search Result 36, Processing Time 0.019 seconds

PDF Version 1.4-1.6 Password Cracking in CUDA GPU Environment (PDF 버전 1.4-1.6의 CUDA GPU 환경에서 암호 해독 최적 구현)

  • Hyun Jun, Kim;Si Woo, Eum;Hwa Jeong, Seo
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.12 no.2
    • /
    • pp.69-76
    • /
    • 2023
  • Hundreds of thousands of passwords are lost or forgotten every year, making the necessary information unavailable to legitimate owners or authorized law enforcement personnel. In order to recover such a password, a tool for password cracking is required. Using GPUs instead of CPUs for password cracking can quickly process the large amount of computation required during the recovery process. This paper optimizes on GPUs using CUDA, with a focus on decryption of the currently most popular PDF 1.4-1.6 version. Techniques such as eliminating unnecessary operations of the MD5 algorithm, implementing 32-bit word integration of the RC4 algorithm, and using shared memory were used. In addition, autotune techniques were used to search for the number of blocks and threads that affect performance improvement. As a result, we showed throughput of 31,460 kp/s (kilo passwords per second) and 66,351 kp/s at block size 65,536, thread size 96 in RTX 3060, RTX 3090 environments, and improved throughput by 22.5% and 15.2%, respectively, compared to the cracking tool hashcat that achieves the highest throughput.

CANVAS: A Cloud-based Research Data Analytics Environment and System

  • Kim, Seongchan;Song, Sa-kwang
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.10
    • /
    • pp.117-124
    • /
    • 2021
  • In this paper, we propose CANVAS (Creative ANalytics enVironment And System), an analytics system of the National Research Data Platform (DataON). CANVAS is a personalized analytics cloud service for researchers who need computing resources and tools for research data analysis. CANVAS is designed in consideration of scalability based on micro-services architecture and was built on top of open-source software such as eGovernment Standard framework (Spring framework), Kubernetes, and JupyterLab. The built system provides personalized analytics environments to multiple users, enabling high-speed and large-capacity analysis by utilizing high-performance cloud infrastructure (CPU/GPU). More specifically, modeling and processing data is possible in JupyterLab or GUI workflow environment. Since CANVAS shares data with DataON, the research data registered by users or downloaded data can be directly processed in the CANVAS. As a result, CANVAS enhances the convenience of data analysis for users in DataON and contributes to the sharing and utilization of research data.

Location-based UCI Sensor time series data analysis (위치 기반의 UCI Sensor 시계열 데이터 분석)

  • Chang, Il-Sik;Park, Goo-man
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • fall
    • /
    • pp.7-8
    • /
    • 2021
  • 인공지능 기술과 서비스는 딥러닝을 중심으로 한 기계학습 기술의 급속한 발전에서 원인을 둔다. 딥러닝 발전 요인으로 GPU등 하드웨어 발전, 기술 공유, 대규모 학습데이터 구축 및 공개를 들 수 있다. 데이터 셋에 관련하여 센서를 이용한 데이터셋의 경우 단순히 많은 데이터셋의 확보뿐 아니라 적절한 위치 및 환경에 따른 고려가 필요하다. 본 논문에서는 UCI의 화학 가스의 데이터셋을 이용하여 위치별 시계열 데이터를 딥러닝을 이용하여 분석하고, 위치별 정확도와 손실을 계산한다. 또한 계산된 결과를 히트맵을 통하여 시각화하여 직관적인 이해를 높인다. 또한 위치별 정확도가 높은 상위 5개의 위치에서 앙상블 방법을 통한 성능의 향상을 확인 하였다.

  • PDF

Large-Scale Ultrasound Volume Rendering using Bricking (블리킹을 이용한 대용량 초음파 볼륨 데이터 렌더링)

  • Kim, Ju-Hwan;Kwon, Koo-Joo;Shin, Byeong-Seok
    • Journal of the Korea Society of Computer and Information
    • /
    • v.13 no.7
    • /
    • pp.117-126
    • /
    • 2008
  • Recent advances in medical imaging technologies have enabled the high-resolution data acquisition. Therefore visualization of such large data set on standard graphics hardware became a popular research theme. Among many visualization techniques, we focused on bricking method which divided the entire volume into smaller bricks and rendered them in order. Since it switches bet\W8n bricks on main memory and bricks on GPU memory on the fly, to achieve better performance, the number of these memory swapping conditions has to be minimized. And, because the original bricking algorithm was designed for regular volume data such as CT and MR, when applying the algorithm to ultrasound volume data which is based on the toroidal coordinate space, it revealed some performance degradation. In some areas near bricks' boundaries, an orthogonal viewing ray intersects the single brick twice, and it consequently makes a single brick memory to be uploaded onto GPU twice in a single frame. To avoid this redundancy, we divided the volume into bricks allowing overlapping between the bricks. In this paper, we suggest the formula to determine an appropriate size of these shared area between the bricks. Using our formula, we could minimize the memory bandwidth. and, at the same time, we could achieve better rendering performance.

  • PDF

CINEMAPIC : Generative AI-based movie concept photo booth system (시네마픽 : 생성형 AI기반 영화 컨셉 포토부스 시스템)

  • Seokhyun Jeong;Seungkyu Leem;Jungjin Lee
    • Journal of the Korea Computer Graphics Society
    • /
    • v.30 no.3
    • /
    • pp.149-158
    • /
    • 2024
  • Photo booths have traditionally provided a fun and easy way to capture and print photos to cherish memories. These booths allow individuals to capture their desired poses and props, sharing memories with friends and family. To enable diverse expressions, generative AI-powered photo booths have emerged. However, existing AI photo booths face challenges such as difficulty in taking group photos, inability to accurately reflect user's poses, and the challenge of applying different concepts to individual subjects. To tackle these issues, we present CINEMAPIC, a photo booth system that allows users to freely choose poses, positions, and concepts for their photos. The system workflow includes three main steps: pre-processing, generation, and post-processing to apply individualized concepts. To produce high-quality group photos, the system generates a transparent image for each character and enhances the backdrop-composited image through a small number of denoising steps. The workflow is accelerated by applying an optimized diffusion model and GPU parallelization. The system was implemented as a prototype, and its effectiveness was validated through a user study and a large-scale pilot operation involving approximately 400 users. The results showed a significant preference for the proposed system over existing methods, confirming its potential for real-world photo booth applications. The proposed CINEMAPIC photo booth is expected to lead the way in a more creative and differentiated market, with potential for widespread application in various fields.

Design and Implementation of a Framework for Collaboration Systems in the Shipbuilding and Marine Industry (조선해양 설계분야에서 협업시스템을 위한 프레임워크의 설계 및 구현)

  • Yun, Moon-Kyeong;Kim, Hyun-Ju;Park, Min-Gil;Han, Myeong-Ki;Kim, Wan-Kyoo
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.05a
    • /
    • pp.270-273
    • /
    • 2015
  • In shipbuilding and marine industry, engineering and design software solutions have upgraded from the original 2D schematic data based CAD system to a modern 3D drawing-based system. Due to the fact that the massive amount of data usage in real time and data volumes of various engineering models including graphic data have increased, several problems such as lack of server resources and improper handling of 3D drawings have been raised. Besides, increasing the number of session connections per server can cause deterioration of server performance. Recently, increasing the yard's sophisticated design capabilities highlighted the need to develop engineering and design system which would not only overcome the network performance issues, but would provide efficient collaborative design environment. This paper presents an overview of the framework for collaborative engineering design system based on the virtual application (Citrix XenApp 6.5)and acceleration hardware technology of 3D graphics (NVIDIA GRID K2 solution).

  • PDF