• Title/Summary/Keyword: GPS time

Search Result 1,614, Processing Time 0.03 seconds

Local Signal Design for Future GPS Systems (차세대 GPS 시스템에 알맞은 국소 신호 설계)

  • Chae, Keunhong;Yoon, Seokho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39A no.6
    • /
    • pp.350-356
    • /
    • 2014
  • In this paper, we design a local signal to improve a tracking performance of time-multiplexed binary offset carrier (TMBOC) signal, which was adopted in modernized global positioning systems (GPS). Specifically, considering that TMBOC signal includes BOC(6,1) components, we first obtain local signal by evenly dividing sub-carrier of TMBOC(6,1,4/33) by the period of a BOC(6,1) pulse. Finally, we remove side-peaks of TMBOC(6,1,4.33) autocorrelation via combination of partial correlations given from designed local signal and solve the ambiguity problem. From numerical results, when performing signal tracking using the designed local signal, we demonstrate that the improved tracking error standard deviation (TESD) performance is offered as compared its autocorrelation and the conventional correlation functions.

Development of a Location Tracking System for Operation Management of Public Garbage Trucks (공공 청소차 운행 관리를 위한 위치 추적 시스템 개발)

  • Baek, Seung-Won;Kim, Ho-Joon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.6 no.6
    • /
    • pp.909-914
    • /
    • 2011
  • In these days, according to the enhancement of the mobile communication technologies, location based services using the location and movements are vitalized. In this paper, we develop a private vehicle tracking system for garbage truck operation management using GPS and CDMA communication and Open map interface. The terminal equipment attached in vehicle receives the GPS signals and detect the position data including time, longitude, latitude, and altitude. And the terminal sends these data to the server PC through CDMA cellular network in fixed period. The server saves these data into database to process in map server program with which we can view real-time trace of moving vehicle. We apply our system to public garbage truck managing operation and we can increase operation efficiency by examine real-time working and moving path and by present reasonable operation rout.

Coastline Change Analysis Using RTK-GPS and Aerial Photo (RTK-GPS와 항공사진을 이용한 해안선 변화량 분석)

  • Lee, Jae-One;Kim, Yong-Suk
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.25 no.3
    • /
    • pp.191-198
    • /
    • 2007
  • According to the survey data during the Japanese Occupation Period, the length of South Korea's coastline is about 11,542km, including the coastlines of mainland and islands. To accurately revise/renew this coastline data through site survey, it will cost great money and time. Also, various development projects such as reclamation works on public waters, constructions of ports/harbors, etc. This paper used aerial photographs, satellite image data and GPS survey data with certain intervals to monitor the change in coastal areas of Songieong, Haeundae, Kwanganri, Songdo and Dadaepo. The local area subjected for this research was limited to areas near Busan. The specific contents of this research include. Launching qualitative/time series analyses on the change of coastal areas using aerial photographs, satellite image data and RTK-GPS surveys.

GPS Carrier Phase Fault Detection with Consideration on User Dynamics (사용자 다이나믹을 고려한 GPS 반송파 고장검출)

  • Won, Dae Hee;Ahn, Jongsun;Sung, Sangkyung;Lee, Eunsung;Heo, Moon-Beom;Lee, Young Jae
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.12
    • /
    • pp.1048-1054
    • /
    • 2012
  • This paper presents a Carrier phase fault detection (FD) method for GPS RTK (Global Positioning System Real Time Kinematic) in dynamic environment. There are various error sources in dynamic environment and these errors decrease the reliability of FD results. Due to the reason, Carrier phase measurements are separated into satellite induced signal, user induced signal and other remaining errors. Especially the user-induced signal is computed by user dynamic which is estimated by time-differenced Carrier phase (TDCP) and Doppler shift. TDCP makes it possible to avoid integer ambiguity resolution. Computer simulation is conducted to verify the suggested method. By applying impulse, step and ramp faults, the FD performance is analyzed.

GPS Based Sensor Network Research for Prediction of Incident (GPS 기반 돌발 상황 예측을 위한 센서네트워크 연구)

  • Jung, Hui-Sok;Won, Dae-Ho;Yang, Yeon-Mo
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2010.05a
    • /
    • pp.454-456
    • /
    • 2010
  • The demands for (a) individual vehicle has been gradually increasing recently due to increase of personal income and spare time. In 2009, the quantities of registered vehicles exceeds over 17,325,210 millions pieces, and the risks of traffic accidents and traffic jam are increasing days by days. It has some limitations to solve the problem of traffic jam by transportation facilities and causes lots of time and costs. For a possible solution, ITS(Intelligent Transport System) has been introduced, but it is an insufficient way for abrupt incidents or risks on roads. The riskiest matter on driving a vehicle is unforeseen situation. In this paper, the most efficient and economical system that communicates with a driver about unexpected accident by sensor network and GPS information, is introduced rather than a traditional method associated with lots of time and costs.

  • PDF

Case Study of Smart Phone GPS Sensor-based Earthwork Monitoring and Simulation (스마트폰 GPS 센서 기반의 토공 공정 모니터링 및 시뮬레이션 활용 사례연구)

  • Jo, Hyeon-Seok;Yun, Chung-Bae;Park, Ji-Hyeon;Han, Sang Uk
    • Journal of KIBIM
    • /
    • v.12 no.4
    • /
    • pp.61-69
    • /
    • 2022
  • Earthmoving operations account for approximately 25% of construction cost, generally executed prior to the construction of buildings and structures with heavy equipment. For the successful completion of earthwork projects, it is crucial to constantly monitor earthwork equipment (e.g., trucks), estimate productivity, and optimize the construction process and equipment on a construction site. Traditional methods however require time-consuming and painstaking tasks for the manual observations of the ongoing field operations. This study proposed the use of a GPS sensor embedded in a smartphone for the tracking and visualization of equipment locations, which are in turn used for the estimation and simulation of cycle times and production rates of ongoing earthwork. This approach is implemented into a digital platform enabling real-time data collection and simulation, particularly in a 2D (e.g., maps) or 3D (e.g., point clouds) virtual environment where the spatial and temporal flows of trucks are visualized. In the case study, the digital platform is applied for an earthmoving operation at the site development work of commercial factories. The results demonstrate that the production rates of various equipment usage scenarios (e.g., the different numbers of trucks) can be estimated through simulation, and then, the optimal number of tucks for the equipment fleet can be determined, thus supporting the practical potential of real-time sensing and simulation for onsite equipment management.

Time Series Coastline Change Analysis of Haeundae Beach (해운대 해안의 시기별 해안선 변화량 분석)

  • Lee, Jae One;Kim, Yong Suk;Lee, In Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.5D
    • /
    • pp.655-662
    • /
    • 2009
  • The monitoring for analyzing coastline variations throughout many years is conducted in this study. Haeundae Beach is selected as a test area. We have collected RTK-GPS survey data, airborne LiDAR survey data from Sept. 2008 to 2005. We've done airborne LiDAR survey 2009 to 2006 and we would analyze coastline changes time series through interactive comparison analysis. The mean coastline distance of Haeundae shore is 1,347m (RTK-GPS) by airborne LiDAR survey (2 times). Coastline distance is decreased approximately 4.5% than mean distance in the November survey of 2008. We know right and left sides of the coastline are eroded and the center section shows us the littoral deposit of 3~7m toward sea. It turns out that the sand both sides is transported to the center section by a wave and tide and we know the coastline distance is getting smaller but the coastline width is getting longer like 2~7m.

Performance Estimation of KPST to GPS Time Offset for GNSS Interoperability to Increase Navigational Performance

  • Lee, Young Kyu;Yang, Sung-hoon;Lee, Ho Seong;Lee, Jong Koo;Hwang, Sang-wook;Rhee, Joon Hyo;Lee, Ju Hyun
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.11 no.3
    • /
    • pp.191-198
    • /
    • 2022
  • In order to increase the practical use and navigational application performance of the Korean Positioning System (KPS), it is required to provide interoperability with other Global Navigation Satellite System (GNSS). This kind of interoperability can be obtained by broadcasting the time offset between KPS and GNSS using a KPS navigation message. With the assumption that KPS Time (KPST) will be generated by the similar method and equipment of UTC(KRIS), the overall behavior of KPST will be close to that of UTC(KRIS). Therefore, the time offset between KPST and GPS Time (GPST) is estimated by using UTC(KRIS) instead of KPST because KPST can not available at the present time. In this paper, we describe the estimation results of the KPS to GPS Time Offset (KGTO) obtained by using a GNSS time transfer receiver which reference inputs are fed from UTC(KRIS). The estimated KGTO performance is compared to the time offset between UTC(KRIS) and UTC(USNO) which is used to generate GPST and considered as the real GPST. The time offset between UTC(KRIS) and UTC(USNO) is obtained by using the Bureau International des Poids et Mesures (BIPM) Circular T report. From the results, it is observed that KGTO can be estimated under 10 ns with the assumption that KPST will be generated by a similar method of UTC(KRIS) generation.

THE IMPROVEMENT OF THE RELATIVE POSITIONING PRECISION FOR GPS L1 SINGLE FREQUENCY RECEIVER USING THE WEIGHTED SMOOTHING TECHNIQUES (가중 평활화 기법을 이용한 GPS L1 단일 주파수 수신기의 상대 측위 정밀도 향상)

  • Choi, Byung-Kyu;Park, Jong-Uk;Joh, Jeong-Ho;Lim, Hyung-Chul;Park, Phi-Ho
    • Journal of Astronomy and Space Sciences
    • /
    • v.21 no.4
    • /
    • pp.371-382
    • /
    • 2004
  • To improve the precision of relative positioning for GPS single frequency(L1) receiver, we accomplished the GPS data processing using the weighted smoothing techniques. The weighted phase smoothing technique is used to minimize the measurement error of pseudorange and position domain smoothing technique is adopted to make the complement of cycle-slip affection. we also considered some component errors like as ionospheric error, which are related with baseline length, and processed for several baselines (5, 10, 30, 40, and 150 km) to check the coverage area of this algorithm. This paper shows that weighted phase smoothing technique give more stable results after using this technique and the position domain smoothing technique can reduce the errors which are sensitive to the observational environment. Based on the results, we could find out that this algorithm is available for post-time and real-time applications and these techniques can be substitution methods which is able to get the high accuracy and precision without resolving the Integer ambiguity.

Analysis study of movement patterns using BigData analysis technology (BigData 분석 기법을 활용한 이동 패턴 분석 연구)

  • Yun, Jun-Soo;Kang, Hee-Soo;Moon, Il-Young
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.5
    • /
    • pp.1073-1079
    • /
    • 2014
  • One of the techniques that are most in the spotlight today, it can be said that Big data. With Big Data, technologies already prevalent in our lives is GPS. Based on the GPS data and Big Data, in this paper, we try to analyze the pattern and path of movement of a particular target. Specific target collects the GPS data by classifying weather and grade and sex of college students, and day of the week in college students of one university. The collected data is analyzed such as movement path, movement time, pattern of repetitive behavior. And visualize it. The analysis method will be classified according to the purpose of data. By identifying relationships with other data results obtained. Based on the present study, the future, we will derive the results of the data more reliable. For this purpose, a wide range of information to be collected will additionally. Research will be developed add to such as Season, time, blood type, occupation data.