• Title/Summary/Keyword: GPS system

Search Result 3,083, Processing Time 0.041 seconds

A New Multi-Beam MVDR Technique for Removing Interference Signals in Array Antenna Based GPS Receivers (GPS 수신기에서 간섭신호 제거를 위한 배열 안테나 기반 다중 빔 MVDR 기법)

  • Jeong, Eui-Rim;Won, Hyun-Hee;Yang, Gi-Jung;Ahn, Byoung-Sun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.3
    • /
    • pp.491-498
    • /
    • 2017
  • GPS (global positioning system) is a popular system that provides location information by measuring arrival time difference at the receiver between several GPS satellite signals. GPS is widely used in commercial area as well as military systems. Reliable GPS signal reception is more important in the military applications such as guided missiles. However, since the carrier frequencies of the GPS signals are well known and the received power is extremely low, the GPS systems are vulnerable to intentional jamming attacks. To remove jammers while maintaining GPS signals at the received signals, a popular technique is an adaptive beam steering method based on array antenna. Among adaptive beam steering techniques, this paper considers MVDR (minimum variance distortionless response) algorithm, and proposes a new adaptive technique that preserves the received signals at desired directions, but removes the unknown jamming signals adaptively. The performance of the proposed method is verified through computer simulation.

A study on INS/GPS implementation of loosely coupled method for localization of mobile robot. (이동로봇의 위치 추정을 위한 약결합 방식의 INS/GPS 구현에 관한 연구)

  • Park, Myung-Hoon;Hong, Seung-Hong
    • Proceedings of the KIEE Conference
    • /
    • 2004.11c
    • /
    • pp.493-495
    • /
    • 2004
  • In this paper, shows a research in accordance with the design the implementation of the localization system for mobile robot using INS(Inertial Navigation System) and GPS(Global Positioning System). First, a Strapdown Inertial Navigation System : SDINS is designed and implemented for low speed walking robot, by modifying Inertial Navigation System which is widely used for rocket, airplane, ship and so on. In addition, thesis proposes the localization of robot with the method of loosely coupled method by using Kalman Filter with INS/GPS integrated system to utilize assumed position and steed data from GPS.

  • PDF

A Study on Global Positioning System of Smart Phone in indoor (실내에서 스마트폰의 글로벌 좌표 인식 시스템에 관한 연구)

  • Oh, Jongtaek
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.15 no.2
    • /
    • pp.151-156
    • /
    • 2015
  • As the proliferation of smart phone, almost every user has one's own smart phone, and the user could get the global position and location based services using GPS system outdoors. But indoor positioning system using GPS does not work, and it could not detect global position using TDOA local positioning system. In this paper, a new indoor global positioning system for smart phone employing GPS receiver and electronic compass device is proposed with the TDOA local positioning system using acoustic signal, and the performance and the experimental result are described.

A Study on the Measurement Time-Delay Estimation of Tightly-Coupled GPS/INS system (강결합방식의 GPS/INS 시스템에 대한 측정치 시간지연 추정 연구)

  • Lee, Youn-Seon;Lee, Sang-Jeong
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.11 no.4
    • /
    • pp.116-123
    • /
    • 2008
  • In this paper we study the performance of the measurement time-delay estimation of tightly-coupled GPS/INS(Global positioning system/Inertial Navigation system) system. Generally, the heading error estimation performance of loosely-coupled GPS/INS system using GPS's Navigation Solution is poor. In the case of tightly-coupled GPS/INS system using pseudo-range and pseudo-range rate, the heading error estimation performance is better. However, the time-delay error on the measurement(pseudo-range rate) make the heading error estimation performance degraded. So that, we propose the time-delay model on the measurement and compose the time-delay estimator. And we confirm that the heading error estimation performance in the case of measurement time-delay existence is similar with the case of no-delay by Monte-Carlo simulation.

A new algorithm for GPS signal transformation with location and distance sensing capability for various sizes of maps (다양한 크기의 지도에 대응 가능한 위치 및 거리 감지 GPS신호 변환 알고리즘 구현)

  • Jung, Ha-Yeon;Sohn, Young-Ho
    • Journal of Sensor Science and Technology
    • /
    • v.18 no.1
    • /
    • pp.22-27
    • /
    • 2009
  • The GPS(global positioning system) made up of 28 artificial satellites going round around the earth at a height of 20,000.Km is a system to determine the receiver's location by measuring the distance between the satellite and receivers using an electronic wave. Recently it's been widely used in various applications, such as a navigator, a surveying system, etc. In this paper, we propose a new algorithm to transform coordinates from GPS signals corresponding to various sizes of maps, and the application using this algorithm is also introduced. The algorithm is programmed by MFC on the WinCE 5.0 operating system, and the GPS receiver with a 20 channel high sensitivity and GPS microcontroller chip manufactured by SiRF Technology was used.

A Study on Development of GPS Simulation Tool Kit (GPS Simulation System 개발에 관한 연구)

  • 양원재;전승환
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 1998.10b
    • /
    • pp.65-73
    • /
    • 1998
  • Ship's positino data obtaining method is ine of the very important factor innavigation . Nowadays, GPS(Global Positioning System) using the earth orbiting satellites are equipped and operated for the position finding. Because it provides more precise position information than other equipments and is very convenient for navigator. In this study, it is designed to develop the GPS simulator for everybody being able to proactise the GPS operating skill like as navigation planning, navigation calculating etc. And also, it can be operated with personal computer without real GPS receiver. This simulation system is based on the real GPS receiver system and built by the visual basic 5.0 program. And it displays the ship's position and navigating information and plots the ship's moving track on the screen in real time according as initial setup data-main engine's rpm, rudder angle, depature position and waypoint.

  • PDF

The Design and Test/valuation of GPS Translator Processing System (GPS 중계기 후처리 장비(TPS) 개발 및 시험평가)

  • 강설묵;이상정
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.6 no.1
    • /
    • pp.49-58
    • /
    • 2003
  • Compared with generic GPS receiver, post-processing software GPS receiver has many advantages for high dynamic vehicle tracking. It has the advantage of the application of various tracking algorithms and aiding schemes. The post-processing system observes the carrier phase measurement data from the recorded GPS signals, detects and isolates the cycle slip. The observed carrier phase data and the raw data of the reference station are processed by carrier phase DGPS scheme. And the integer ambiguity resolution algorithm is used for resolving single frequency carrier phase ambiguity. The results of static and real flight test are presented and show that the proposed GPS translator processing system satisfies submeter accuracy.

Study on Observabi1ity Entrancement of SDINS in-flight using GPS Carrier Phase Measurements (GPS 반송파위상 정보를 이용한 SDINS의 운항중 정렬에 대한 가관측성 향상기법 연구)

  • 박준구;박찬국;이장규
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.54-54
    • /
    • 2000
  • For its synergistic relationship, an integrated SDINS/GPS system has been adopted in many navigation areas. As an application of SDINS/GPS integration, the in-flight alignment process of a SDINS utilizing GPS carrier phase measurements is introduced and analyzed via an observability analysis using nul1 space method. A measurement model of double-differenced GPS carrier phase measurements is newly derived in order to be used with a SDINS error model. Also, conditions for determining the complete observability of a SDINS/GPS system are suggested and proved. Consequently, it is shown that the system is not completely observable in case of one basel me. With one baseline aligned with y-axis of body frame, pitch error and x-axis accelerometer bias are unobservable states. Also shown is that al1 states are completely observable when sequential maneuver is performed. Above results are confirmed by a covariance analysis.

  • PDF

Performance Enhancement and Countermeasure for GPS Failure of GPS/INS Navigation System of UAV Through Integration of 3D Magnetic Vector

  • No, Heekwon;Song, Junesol;Kim, Jungbeom;Bae, Yonghwan;Kee, Changdon
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.7 no.3
    • /
    • pp.155-163
    • /
    • 2018
  • This study examined methods to enhance navigation performance and reduce the divergence of navigation solutions that may occur in the event of global positioning system (GPS) failure by integrating the GPS/inertial navigation system (INS) with the three-dimensional (3D) magnetic vector measurements of a magnetometer. A magnetic heading aiding method that employs a magnetometer has been widely used to enhance the heading performance in low-cost GPS/INS navigation systems with insufficient observability. However, in the case of GPS failure, wrong heading information may further accelerate the divergence of the navigation solution. In this study, a method of integrating the 3D magnetic vector measurements of a magnetometer is proposed as a countermeasure for the case where the GPS fails. As the proposed method does not require attitude information for integration unlike the existing magnetic heading aiding method, it is applicable even in case of GPS failure. In addition, the existing magnetic heading aiding method utilizes only one-dimensional information in the heading direction, whereas the proposed method uses the two-dimensional attitude information of the magnetic vector, thus improving the observability of the system. To confirm the effect of the proposed method, simulation was performed for the normal operation and failure situation of GPS. The result confirmed that the proposed method improved the accuracy of the navigation solution and reduced the divergence speed of the navigation solution in the case of GPS failure, as compared with that of the existing method.

A Study on the Accuracy Improvement Technique Using GPS Clock (GPS의 시각 응용에 따른 정밀도 개선에 관한 연구)

  • Chea, G.H.;Sakamoto, K.
    • Journal of Power System Engineering
    • /
    • v.14 no.1
    • /
    • pp.5-10
    • /
    • 2010
  • Both the accuracy and stability of the clock get from the GPS receiver are considered in the range of pps. And we verified the system clock stability of a micro-controller system using the pps pulse supplied by the GPS receiver. In complex system of digital processing, the rack of precise timing signal may cause the serious problem or breakdown accident. To get rid of these undesirable problems, we introduced VCXO circuit to a micro-controller system to preserve high accurate clock stability.