• Title/Summary/Keyword: GPS Jamming

Search Result 125, Processing Time 0.029 seconds

4 and 7 Element GPS Anti-jamming Algorithm Performance Analysis Considering the Relative Arrangement of the Multiple Jammers (비행체의 자세와 GPS 재머의 상대적인 배치상태를 고려한 4소자 및 7소자 항재밍장치에 대한 성능분석)

  • Choi, Jae-Gun
    • Journal of Advanced Navigation Technology
    • /
    • v.20 no.3
    • /
    • pp.218-225
    • /
    • 2016
  • Null steering and beam steering are known well as anti-jamming methods in GPS anti-jamming system. Null steering gets a noise attenuation effect for the direction of jamming and beam steering earns additional gain synthesis for the direction of satellite signals. According to the research in the article for signal processing, it expresses that the N array antenna is effective for N-1 number of jamming signal by math public interest, however, the two algorithms analysis is not unknown for the operating condition of the realistic vehicle. In this paper, we modeled anti-jamming system using 4 and 7 array antenna and showed the two algorithms performance (PM, LCMV) when considering the number of antenna array, jammers and vehicle position (horizontal, vertical). In result, we showed that the case of vertical position of the vehicle which has large tilt angle for the relative position of satellites and jammers, has about 10 dB gain more in comparison with one of vertical position in spite of same JSR condition.

Cramer-Rao Lower Bound of Effective Carrier-to-noise Power Ratio Estimation for a GPS L1 C/A Signal under Band-limited White Noise Jamming Environments (대역제한 백색잡음 재밍환경에서 GPS L1 C/A 신호를 위한 유효 반송파 대 잡음 전력비 추정치의 CRLB)

  • Yoo, Seungsoo;Yeom, Dong-Jin;Jee, Gyu-In;Kim, Sun Yong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.8
    • /
    • pp.890-894
    • /
    • 2014
  • In this paper, we derive the CRLB (Cramer-Rao Lower Bound) of effective carrier-to-noise power ratio ($C/N_0$) estimation for a GPS (Global Positioning System) L1 C/A (Coarse/Acquisition) signal under band-limited white noise jamming environments. The quality of a received GPS signal is commonly described in terms of its $C/N_0$, implying that the noise is white and thus can be described by scalar noise density. However, if some intentional interference is received to a victim GPS receiver, then the $C/N_0$ is no longer the efficacious performance indicator. The correct and straightforward measurement to analyze the receiving situation is the effective $C/N_0$. In this paper, we consider a band-limited white noise jamming whose bandwidth is 2MHz and is the same as one of the first null-to-null bandwidth of the GPS L1 C/A signal.

Monitoring of the Jamming Environment in the GNSS L5 Band in Korea Region

  • Lee, Hak-beom;Song, Young-Jin;Park, Dong-Hyuk;Lee, Sanguk;Won, Jong-Hoon
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.10 no.4
    • /
    • pp.353-361
    • /
    • 2021
  • This paper presents the jamming effect on the L5 band of Global Navigation Satellite System (GNSS) by analyzing real data collected via measurement campaigns in Korea region. In fact, the L5 band is one of the dedicated bands for various satellite navigation systems such as Global Positioning System (GPS), Galileo, BeiDou (BDS), and Quasi Zenith Satellite System (QZSS). And this band is also allocated along with various systems used for aeronautical radio navigation systems (ARNS). Among ARNS, the Distance Measuring Equipment (DME) and the Tactical Air Navigation System (TACAN) are systems that transmit and receive strong power pulse signals, which may cause unintentional jamming in the reception of GNSS signals. In this paper, signals in the main lobe of GPS L5, Galileo E5a, BDS B2a, and QZSS L5 are collected in Korean region to confirm whether the jamming effect exists in the band. And then, the pulse blanking technique, which is a simple signal processing technique capable of responding to pulsed jamming, is applied to analyze the jamming effect of DME/TACAN on the L5 band.

Mathematical Algorithms for Two-Dimensional Positioning Based on GPS Pseudorange Technique

  • Ko, Kwang-Soob;Choi, Chang-Mook
    • Journal of information and communication convergence engineering
    • /
    • v.8 no.5
    • /
    • pp.602-607
    • /
    • 2010
  • Recently, one has realized that the threedimensional positioning technique used in GPS can be effectively applied to the modern two-dimensional positioning. Such a technique might has applied to the twodimensional positioning in fields of the mobile communication, eLORAN and the GPS jamming/ electronic warfare system. In the paper, we have studied on algorithms for two-dimensional positioning based on GPS Pseudorange Technique. The main works and results are summarized below. First, the linearized state equation was mathematically derived based on GPS pseudorange technique. Second, the geometry model with respect to triangles formed using unit-vectors were proposed for investigation of land-based radio positioning. Finally, the corresponding mathematical formulations for DOP values and covariance matrix were designed for two-dimensional positioning.

Performance Analysis of Efficient Subchannelization Algorithm against Partial Band Jamming (부채널화를 통한 효율적인 부분대역 재밍 회피 알고리즘과 성능분석)

  • Song, Yu Chan;Hwang, Yu Min;Park, Ji Ho;Kim, Jin Young;Shin, Yoan
    • Journal of Satellite, Information and Communications
    • /
    • v.10 no.2
    • /
    • pp.14-18
    • /
    • 2015
  • Electronic warfare recently has became the core of modern warfare and the importance of communication survivability is being considerable day by day. In this paper, we propose an effective jamming avoidance algorithm aginst widely used jamming environment such as GPS jamming. In order to simulate to show our system performance, we consider IEEE 802.16 WiMAX protocol and partial band jamming envoriment. Proposed algorithm can improve channel capacity through subchannelization and we show channel capacity corresponding to subchannel parameter.

A Comparison of C/No Estimation Techniques for Commercial GPS Receivers under Jamming Environments (전파방해환경에서 상용 GPS 수신기의 C/No 추정기법 성능분석)

  • Baek, Jeehyeon;Yoo, Seungsoo;Kim, Sun Yong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38A no.11
    • /
    • pp.973-975
    • /
    • 2013
  • In this paper, the carrier-to-noise power ratio estimation performances for commercial GPS receiver are shown by simulation and are analyzed under weak signal reception, high sensitivity signal reception, and the matched spectrum jamming signal reception environments.

Design of an Anti-Jamming Five-Element Planar GPS Array Antenna (재밍대응 5소자 평면 GPS 배열 안테나 설계)

  • Seo, Seung Mo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.25 no.6
    • /
    • pp.628-636
    • /
    • 2014
  • This paper describes the design and analysis of five-element planar array antenna of an anti-jamming satellite navigation system. We propose a design of multi-layer patch antenna for Global Positioning System(GPS) $L_1/L_2$ dual bands. The proposed antenna has two ports feeding network with a hybrid chip coupler for a broad bandwidth with Right-Handed Circular Polarization(RHCP). The measurement results show the bore-sight gains of 1.10 dBic($L_1$) and 0.37 dBic($L_2$) for the center element. The bore-sight gains of an edge element are 0.99 dBic($L_1$) and -0.57 dBic($L_2$). At a fixed elevation angle of $30^{\circ}$, antennas show average gains of -2.08 dBic ($L_1$) and -5.33 dBic($L_2$) for the center element, and average gains of -0.40 dBic($L_1$) and -2.09 dBic($L_2$) for the edge elements. The results demonstrate that the proposed array antenna is suitable for anti-jamming applications.

A Preliminary Implementation Study of TDMA-based Positioning System Utilizing USRP and GNU Radio

  • Yoo, Won Jae;Choi, Kwang Ho;Lim, JoonHoo;Kim, La Woo;So, Hyoungmin;Lee, Hyung Keun
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.6 no.3
    • /
    • pp.95-104
    • /
    • 2017
  • Positioning signals transmitted by Global Positioning System (GPS) satellites located at approximately 20,000 km height is very weak. For the reason, GPS signals are vulnerable to intentional jamming and unintentional disturbance. Recently, the number of jamming has been increased significantly all over the world. For the applications where continuous and reliable positioning is required when GPS jammers are activated, other positioning systems are strongly required. In this work, a set of Time Division Multiple Access (TDMA)-based transmitters and receivers utilizing Universal Software Radio Peripheral (USRP) and GNU Radio are designed and implemented. To eliminate the undesirable effects of GPS jamming, a frequency band which does not overlap L band is utilized. To demonstrate the accuracy of the proposed method, an experiment was performed.

Implementation and Test of Simulator for Analyzing Effect of GNSS Jamming (GNSS 전파교란 영향분석 시뮬레이터 구현 및 시험)

  • Joo, Inone;Sin, Cheonsig
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.24 no.4
    • /
    • pp.1-5
    • /
    • 2016
  • As a dependency on Global Navigation Satellite System (GNSS) becomes increase in various applications, its reliability has been very important. However, in South Korea, Global Positioning System (GPS) jamming incident happened four times since 2010. GNSS signal is so weak that it is highly susceptible to all types of the jamming. GNSS jamming can cause serious damage in the safety-critical applications based on the GNSS. In this paper, we present the GNSS jamming signal propagation prediction simulator based on ITU-R P.1546 model. This simulator is developed for preventing or reducing the damage from the GNSS jamming attack by predicting the jamming propagation strength based on the geographical information in Korean peninsula.