• Title/Summary/Keyword: GPS Clock

Search Result 135, Processing Time 0.031 seconds

A Development of GPS SIS Anomalies Generation Software

  • Han, Younghoon;Ko, Jaeyoung;Shin, Mi Young;Cho, Deuk Jae
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.2 no.1
    • /
    • pp.33-40
    • /
    • 2013
  • In this paper, GPS signal anomaly generation software is proposed which can be used for the analysis of GPS signal anomaly effect and the design, verification, and operation test of anomalous signal monitoring technique. For the implementation of anomalous signal generation technique, anomalous signals are generated using a commercial signal generation simulator, and their effects and characteristics are analyzed. An error model equation is proposed from the result of analysis, and the anomalous signal generation software is constructed based on this equation. The proposed anomalous signal generation software has high scalability so that users can easily utilize and apply, and is economical as the additional cost for purchasing equipment is not necessary. Also, it is capable of anomalous signal generation based on real-time signal by comparing with the commercial signal generation simulator.

Precise Orbit Determination of GRACE-A Satellite with Kinematic GPS PPP

  • Choi, Byung-Kyu;Roh, Kyoung-Min;Yoo, Sung-Moon;Jo, Jung-Hyun;Lee, Sang-Jeong
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.1 no.1
    • /
    • pp.59-64
    • /
    • 2012
  • Precise Point Positioning (PPP) has been widely used in navigation and orbit determination applications as we can obtain precise Global Positioning System (GPS) satellite orbit and clock products. Kinematic PPP, which is based on the GPS measurements only from the spaceborne GPS receiver, has some advantages for a simple precise orbit determination (POD). In this study, we developed kinematic PPP technique to estimate the orbits of GRACE-A satellite. The comparison of the mean position between the JPL's orbit product and our results showed the orbit differences 0.18 cm, 0.54 cm, and 0.98 cm in the Radial, in Along-track, and Cross-track direction respectively. In addition, we obtained the root mean square (rms) values of 4.06 cm, 3.90 cm, and 3.23 cm in the satellite coordinate components relative to the known coordinates.

Method of BeiDou Pseudorange Correction for Multi-GNSS Augmentation System (멀티 GNSS 보정시스템을 위한 BeiDou 의사거리 보정기법)

  • Seo, Ki-Yeol;Kim, Young-Ki;Jang, Won-Seok;Park, Sang-Hyun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.10
    • /
    • pp.2307-2314
    • /
    • 2015
  • This paper focuses on the generation algorithm of BeiDou pseudorange correction (PRC) and simulation based performance verification for design of Differential Global Navigation Satellite System (DGNSS) reference station and integrity monitor (RSIM) in order to prepare for recapitalization of DGNSS. First of all, it discusses the International standard on DGNSS RSIM, based on the interface control document (ICD) for BeiDou, estimates the satellite position using satellite clock offset and user receiver clock offset, and the system time offset between Global Positioning System (GPS) and BeiDou. Using the performance verification platform interfaced with GNSS (GPS/BeiDou) simulator, it calculates the BeiDou pseudorange corrections , compares the results of position accuracy with GPS/DGPS. As the test results, this paper verified to meet the performance of position accuracy for DGNSS RSIM operation required on Radio Technical Commission for Maritime Services (RTCM) standard.

A Study on the Introduction of GPS Virtual Reference System in South Korea (GPS 가상기준점 도입에 관한 연구)

  • 최윤수;이용창;권재현;이재원
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.22 no.2
    • /
    • pp.105-116
    • /
    • 2004
  • According to the developing advanced techniques and removal of Selective Availability, much research has been conducted to improve the accuracy of GPS positioning in absolute and relative mode by estimating the nuisance parameters such as atmospheric effect, clock errors and multipath. Especially, the continuous effort of establishing the CORS in many countries and the effort of ICS making effective global networking make more application areas and the necessity of more precise location is being increased. Some of the countries like German, Japan and Swiss already utilized the Virtual Reference System for better location accuracy and services. In this study, the VRS system is investigated in terms of system principle, required H/W and S/W, management and operation, revision of related law, expected application and market etc. and find optimal solution in each aspect for economic and fast set up of the system in this country. The analysis of Korean CORS, communication infra and market estimation is performed for the efficient system establishment. Also. the suggestion on the advertisement and education of the system is also included. It is expected that this study contributes for the establishment of effective and precise nationwide location service so that many SOC areas including navigation, GIS, Telematics, LBS can provides better service for the users.

Accuracy Evaluation of IGS-RTS Corrections to Stand-Alone Positioning Based on GPS Code-Pseudorange Measurements

  • Kang, Min-Wook;Won, Jihye;Kim, Mi-So;Park, Kwan-Dong
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.5 no.2
    • /
    • pp.59-66
    • /
    • 2016
  • The International GNSS Service (IGS) provides the IGS-Real Time Service (IGS-RTS) corrections that can be used in stand-alone positioning in real time. In this study, the positioning accuracy before and after the application of the corrections to broadcast ephemeris by applying the IGS-RTS corrections at code pseudo-range based stand-alone positioning was compared with positioning result using precise ephemeris. The analysis result on IGS-RTS corrections showed that orbit error and clock error were 0.05 m and 0.5 ns compared to precise ephemeris and accuracy improved by about 8.5% compared to the broadcast ephemeris-applied result when the IGS-RTS was applied to positioning. Furthermore, regionally dispersed five observatories were selected to analyze the effect of external environments on positioning accuracy and positioning errors according to location and time were compared as well as the number of visible satellites and position dilution of precision by observatory were analyzed to verify a correlation with positioning error.

Method of Differential Corrections Using GPS/Galileo Pseudorange Measurement for DGNSS RSIM (DGNSS RSIM을 위한 GPS/Galileo 의사거리 보정기법)

  • Seo, Ki-Yeol;Kim, Young-Ki;Jang, Won-Seok;Park, Sang-Hyun
    • Journal of Navigation and Port Research
    • /
    • v.38 no.4
    • /
    • pp.373-378
    • /
    • 2014
  • In order to prepare for recapitalization of differential GNSS (DGNSS) reference station and integrity monitor (RSIM) due to GNSS diversification, this paper focuses on differential correction algorithm using GPS/Galileo pesudorange. The technical standards on operation and broadcast of DGNSS RSIM are described as operation of differential GPS (DGPS) RSIM for conversion of DGNSS RSIM. Usually, in order to get the differential corrections of GNSS pesudorange, the system must know the real positions of satellites and user. Therefore, for calculating the position of Galileo satellites correctly, using the equation for calculating the SV position in Galileo ICD (Interface Control Document), it estimates the SV position based on Ephemeris data obtained from user receiver, and calculates the clock offset of satellite and user receiver, system time offset between GPS and Galileo, then determines the pseudorange corrections of GPS/Galileo. Based on a platform for performance verification connected with GPS/Galileo integrated signal simulator, it compared the PRC (pseudorange correction) errors of GPS and Galileo, analyzed the position errors of DGPS, DGalileo, and DGPS/DGalileo respectively. The proposed method was evaluated according to PRC errors and position accuracy at the simulation platform. When using the DGPS/DGalileo corrections, this paper could confirm that the results met the performance requirements of the RTCM.

Pecipitable Water Vapor Change Obtained From GPS Data

  • Kingpaiboon, Sununtha;Satomura, Mikio;Horikawa, Mayumi;Nakaegawa, Tosiyuki;Shimada, Seiichi
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.384-386
    • /
    • 2003
  • GPS observation has been performed at Khon Kaen in northeast Thailand to investigate the Precipitable Water Vapor (PWV) change since August 2001 by using a Trimble 4000SSi receiver. The data obtained in the period from March to June in 2002 were processed by using CAMIT software to obtain the Zenith Tropospheric Delay (ZTD) at every one hour referring to some IGS stations around Thailand. We estimated the Zenith Hydrostatic Delay (ZHD) at every three hours with barometer data at Khon Kaen of Thai Meteorological Department, The Zenith Wet Delay (ZWD) was obtained by subtracting ZHD from ZTD and PWV can be calculated from ZTD. The results obtained shows that PWV changes with a large amplitude in March and April before the monsoon onset, and also we can see steep PWV increases before rain and decreases after rain. In May and June after the onset, the PWV is almost constant to be 60 to 70 mm, but there is a semi-diurnal change which has high PWV values at about 8 and 20 o'clock in local time.

  • PDF

Error Budget Analysis of Pseudorange for Improving the GPS Positioning Accuracy (GPS 위치정확도 향상을 위한 의사거리 오차의 분석에 관한 연구)

  • Kim, Yong-Il;Kim, Dong-Hyun;Kim, Byung-Guk
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.4 no.2 s.8
    • /
    • pp.79-90
    • /
    • 1996
  • It is well known that point positioning using a C/A-code receiver is severely biased by errors in pseudorange. This paper shows the procedures of quantitive analysis for several error elements and that some methods to monitor SA(selective availability) of witch process is not opened are proposed. It is possible to verify the effects of SA in the Doppler shift and receiver clock drift variation. Easy methods to reduce SA effects are to fit second order polynomials for the one and a linear function for the other. With periodic autocorrelation functions. SA effects are analyzed and first order Gauss-Markov process parameters are decided.

  • PDF

Design Considerations for KPS Navigation Message

  • Noh, Jae Hee;Lim, Deok Won;Heo, Moon Beom;Jo, Gwang Hee;Lee, Sang Jeong
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.9 no.4
    • /
    • pp.305-317
    • /
    • 2020
  • The navigation message is composed of the information contained in the message and the structure for transmitting this information. In order to design a navigation message, considerations in terms of message content and message structure must be elicited. For designing a Korea Positioning System (KPS) navigation message, this paper explains performance indicators in terms of message structure and message content. Most of the performance analysis of GNSS navigation messages already in operation was performed only for Time-to-first-fix-Data (TTFFD). However, in the navigation message, the message content is composed of Clock-Ephemeris Data (CED) and additional information. So, this paper proposes a new performance indicator R_(Non-CED) that can be analyzed from the viewpoint of receiving additional information along with an explanation of TTFFD focusing on the CED reception time. This paper analyze the performance in terms of message structure using these two performance indicators. The message structures used for analysis are the packetized message protocol like GPS CNAV and the packetized and fixed pattern message protocol like GPS CNAV-2. From the results, it is possible to proffer how KPS navigation messages can have better performance than GPS navigation messages. And, these two performance indicators, TTFFD and RNon-CED, can help to design the minimum TTFF required performance of KPS navigation messages.

Synchronized sensing for wireless monitoring of large structures

  • Kim, Robin E.;Li, Jian;Spencer, Billie F. Jr;Nagayama, Tomonori;Mechitov, Kirill A.
    • Smart Structures and Systems
    • /
    • v.18 no.5
    • /
    • pp.885-909
    • /
    • 2016
  • Advances in low-cost wireless sensing have made instrumentation of large civil infrastructure systems with dense arrays of wireless sensors possible. A critical issue with regard to effective use of the information harvested from these sensors is synchronized sensing. Although a number of synchronization methods have been developed, most provide only clock synchronization. Synchronized sensing requires not only clock synchronization among wireless nodes, but also synchronization of the data. Existing synchronization protocols are generally limited to networks of modest size in which all sensor nodes are within a limited distance from a central base station. The scale of civil infrastructure is often too large to be covered by a single wireless sensor network. Multiple independent networks have been installed, and post-facto synchronization schemes have been developed and applied with some success. In this paper, we present a new approach to achieving synchronized sensing among multiple networks using the Pulse-Per-Second signals from low-cost GPS receivers. The method is implemented and verified on the Imote2 sensor platform using TinyOS to achieve $50{\mu}s$ synchronization accuracy of the measured data for multiple networks. These results demonstrate that the proposed approach is highly-scalable, realizing precise synchronized sensing that is necessary for effective structural health monitoring.